Publications by authors named "Guglielmo Villani"

Introduction: Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an inherited disorder of L-isoleucine metabolism due to mutations in the gene. The role of current diagnostic biomarkers [i.e.

View Article and Find Full Text PDF

The characterization of urinary metabolome, which provides a fingerprint for each individual, is an important step to reach personalized medicine. It is influenced by exogenous and endogenous factors; among them, we investigated sex influences on 72 organic acids measured through GC-MS analysis in the urine of 291 children (152 males; 139 females) aging 1-36 months and stratified in four groups of age. Among the 72 urinary metabolites, in all age groups, 4-hydroxy-butirate and homogentisate are found only in males, whereas 3-hydroxy-dodecanoate, methylcitrate, and phenylacetate are found only in females.

View Article and Find Full Text PDF

In the last years tandem mass spectrometry (MS/MS) has become a leading technology used for neonatal screening purposes. Newborn screening by MS/MS on dried blood spot samples (DBS) has one of its items in methionine levels: the knowledge of this parameter allows the identification of infant affected by homocystinuria (cystathionine β-synthase, CBS, deficiency) but can also lead, as side effect, to identify cases of methionine adenosyltransferase (MAT) type I/III deficiency. We started an expanded newborn screening for inborn errors of metabolism in Campania region in 2007.

View Article and Find Full Text PDF

3-Methylcrotonylglycinuria is an organic aciduria resulting from deficiency of 3-methylcrotonyl-CoA carboxylase (3-MCC), a biotin-dependent mitochondrial enzym carboxylating 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA during leucine catabolism. Its deficiency, due to mutations on MCCC1 and MCCC2 genes, leads to accumulation of 3-methylcrotonyl-CoA metabolites in blood and/or urine, primarily 3-hydroxyisovaleryl-carnitine (C5-OH) in plasma and 3-methylcrotonyl-glycine (3-MCG) and 3-hydroxyisovaleric acid (3-HIVA) in the urine. The phenotype of 3-MCC deficiency is highly variable, ranging from severe neurological abnormalities and death in infancy to asymptomatic adults.

View Article and Find Full Text PDF

Background: Glycogen storage disease type I (GSDI) is an inborn error of carbohydrate metabolism caused by mutations of either the G6PC gene (GSDIa) or the SLC37A4 gene (GSDIb). GSDIa patients are at higher risk of developing insulin-resistance (IR). Mitochondrial dysfunction has been implicated in the development of IR.

View Article and Find Full Text PDF

Organic acidurias are inherited metabolic diseases due to the deficiency of an enzyme or a transport protein involved in one of the several cellular metabolic pathways devoted to the catabolism of amino acids, carbohydrates or lipids. These deficiencies result in abnormal accumulation of organic acids in the body and their abnormal excretion in urine. More than 65 organic acidurias have been described; the incidence varies, individually, from 1 out of 10,000 to >1 out of 1000,000 live births.

View Article and Find Full Text PDF

Inborn errors of metabolism are genetic disorders due to impaired activity of enzymes, transporters, or cofactors resulting in accumulation of abnormal metabolites proximal to the metabolic block, lack of essential products or accumulation of by-products. Many of these disorders have serious clinical consequences for affected neonates, and an early diagnosis allows presymptomatic treatment which can prevent severe permanent sequelae and in some cases death. Expanded newborn screening for these diseases is a promising field of targeted metabolomics.

View Article and Find Full Text PDF

Objectives: Besides the inherited form, vitamin B(12) deficiency may be due to diet restrictions or abnormal absorption. The spread of newborn screening programs worldwide has pointed out that non-inherited conditions are mainly secondary to a maternal deficiency. The aim of our work was to study seven cases of acquired vitamin B12 deficiency detected during our newborn screening project.

View Article and Find Full Text PDF

Fabry disease is an X-linked lysosomal disease caused by mutations of the alpha-galactosidase A (GLA) gene at chromosome subband Xq22.1. To date, more than 600 genetic mutations have been identified to determine the nature and frequency of the molecular lesions causing the classical and milder variant phenotypes and for precise carrier detection.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a rare genetic disorder that is caused by mutations in the α-L-iduronidase (IDUA) gene, resulting in the deficiency of IDUA enzyme activity and intra-cellular accumulation of glycosaminoglycans. A characteristic skeletal phenotype is one of the many clinical manifestations in Hurler disease. Since the mechanism(s) underlying these skeletal defects are not completely understood, and bone and cartilage are mesenchymal lineages, we focused on the characterization of mesenchymal cells isolated from the bone marrow (BM) of 5 Hurler patients.

View Article and Find Full Text PDF

Mucopolysaccharidoses (MPSs) are lysosomal storage diseases (LSDs) caused by defects in lysosomal enzymes involved in the catabolism of glycosaminoglycans. The pathogenesis of these disorders is still not completely known, although inflammation and oxidative stress appear to be common mechanisms, as in all LSDs. Recently, it was hypothesized that endoplasmic reticulum (ER) stress followed by an unfolded protein response (UPR) could be another common pathogenetic mechanism in LSDs.

View Article and Find Full Text PDF

Apparent homozygosity for the mutation p.R315X present on exon 5 of the arylsulfatase B (ARSB) gene in a mucopolysaccharidosis type VI patient was solved in this study by further testing for a second mutation. Patient cDNA analysis revealed that the entire exon 5 of the ARSB gene was lacking; this new mutation was identified as c.

View Article and Find Full Text PDF

Mucopolysacccharidosis (MPS) IIIB is an inherited lysosomal storage disorder caused by the deficiency of alpha-N-acetylglucosaminidase (NAGLU). The disease is characterized by mild somatic features and severe neurological involvement with high mortality. Although several therapeutic approaches have been applied to the murine model of the disease, no effective therapy is available for patients.

View Article and Find Full Text PDF

Sanfilippo B syndrome (Mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease due to mutations in the gene encoding alpha-N-acetylglucosaminidase and is characterized by a severe neurological disorder. Although several studies have been reported for the murine model of the disease, the molecular basis and the sequence of events leading to neurodegeneration remain to be clarified. We previously suggested the possible involvement of the reactive oxygen species in the disease pathogenesis.

View Article and Find Full Text PDF

MPS VI (mucopolysaccharidosis type VI) is a lysosomal storage disease in which deficient activity of the enzyme N-acetylgalactosamine 4-sulfatase [ASB (arylsulfatase B)] impairs the stepwise degradation of the GAG (glycosaminoglycan) dermatan sulfate. Clinical studies of ERT (enzyme replacement therapy) by using rhASB (recombinant human ASB) have been reported with promising results. The release of GAG into the urine is currently used as a biomarker of disease, reflecting in some cases disease severity and in all cases therapeutic responsiveness.

View Article and Find Full Text PDF

Mucopolysaccharidosis IIIB (MPS IIIB; Sanfilippo syndrome type B) is characterized by profound neurological deterioration. Because a murine model of MPS IIIB disease is available, we focused on analysis of gene expression in the brain and cerebellum of 7-month-old MPS IIIB mice by pathway-specific filter microarrays designed to probe apoptotic-related, neurotrophic signalling molecules and inflammatory cytokines and receptors. Moreover, we extended the analysis with real-time PCR performed at 1, 3, 7 months after birth.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I is a lysosomal disease due to mutations in the IDUA gene, resulting in deficiency of alpha-L-iduronidase and accumulation of glycosaminoglycans (GAGs). Bone marrow transplantation and enzyme replacement are two therapies considered only moderately successful for affected patients, making the development of novel treatments necessary. We have previously shown the efficacy of lentivirus-mediated gene transfer to correct patient fibroblasts in vitro.

View Article and Find Full Text PDF

The Sanfilippo syndrome type B (mucopolysaccharidosis IIIB) is an autosomal recessive disorder due to mutations in the gene encoding NAGLU (alpha-N-acetylglucosaminidase), one of the enzymes required for the degradation of the GAG (glycosaminoglycan) heparan sulphate. No therapy exists for affected patients. We have shown previously the efficacy of lentiviral-NAGLU-mediated gene transfer in correcting in vitro the defect on fibroblasts of patients.

View Article and Find Full Text PDF

The Sanfilippo type A syndrome, one of the most frequent forms of mucopolysaccharidosis III, is characterized by severe mental retardation, progressive neurological degeneration, and mild somatic changes. It is due to a deficiency of heparan-N-sulfatase (sulfamidase) activity and consequent excretion of heparan sulfate in the urine. The disease is transmitted through an autosomal recessive mechanism, and more than 60 gene mutations have been identified.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIB (MPS IIIB; or Sanfilippo syndrome type B) is a lysosomal disease, due to glycosaminoglycan storage caused by mutations on the alpha-N-acetylglucosaminidase (NAGLU) gene. The disease is characterized by neurological dysfunction but relatively mild somatic manifestations. No effective treatment is available for affected patients.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) results from a deficiency in the enzyme alpha-L-iduronidase (IDUA), and is characterized by skeletal abnormalities, hepatosplenomegaly and neurological dysfunction. In this study, we used a late generation lentiviral vector to evaluate the utility of this vector system for the transfer and expression of the human IDUA cDNA in MPS I fibroblasts. We observed that the level of enzyme expression in transduced cells was 1.

View Article and Find Full Text PDF