Despite remarkable advancements in the organic synthesis field facilitated by the use of machine learning (ML) techniques, the prediction of reaction outcomes, including yield estimation, catalyst optimization, and mechanism identification, continues to pose a significant challenge. This challenge arises primarily from the lack of appropriate descriptors capable of retaining crucial molecular information for accurate prediction while also ensuring computational efficiency. This study presents a successful application of ML for predicting the performance of Ir-catalyzed allylic substitution reactions.
View Article and Find Full Text PDFJ Cheminform
February 2024
Developing machine learning models with high generalization capability for predicting chemical reaction yields is of significant interest and importance. The efficacy of such models depends heavily on the representation of chemical reactions, which has commonly been learned from SMILES or graphs of molecules using deep neural networks. However, the progression of chemical reactions is inherently determined by the molecular 3D geometric properties, which have been recently highlighted as crucial features in accurately predicting molecular properties and chemical reactions.
View Article and Find Full Text PDFRecent breakthrough in spatial transcriptomics has brought great opportunities for exploring gene regulatory networks (GRNs) from a brand-new perspective. Especially, the local expression patterns and spatio-temporal regulation mechanisms captured by spatial expression images allow more delicate delineation of the interplay between transcript factors and their target genes. However, the complexity and size of spatial image collections pose significant challenges to GRN inference using image-based methods.
View Article and Find Full Text PDF