In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis.
View Article and Find Full Text PDFThe localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes.
View Article and Find Full Text PDFUnlabelled: PML nuclear bodies (NB) are disrupted in PML-RARA-driven acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) cures 70% of patients with APL, driving PML-RARA degradation and NB reformation. In non-APL cells, arsenic binding onto PML also amplifies NB formation.
View Article and Find Full Text PDFα-Synuclein (α-Syn) aggregation into fibrils with prion-like features is intimately associated with Lewy pathology and various synucleinopathies. Emerging studies suggest that α-Syn could form liquid condensates through phase separation. The role of these condensates in aggregation and disease remains elusive and the interplay between α-Syn fibrils and α-Syn condensates remains unexplored, possibly due to difficulties in triggering the formation of α-Syn condensates in cells.
View Article and Find Full Text PDFIn mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis.
View Article and Find Full Text PDFAlthough it is now recognized that specific RNAs and protein families are critical for the biogenesis of ribonucleoprotein (RNP) condensates, how these molecular constituents determine condensate size and morphology is unknown. To circumvent the biochemical complexity of endogenous RNP condensates, the use of programmable tools to reconstitute condensate formation with minimal constituents can be instrumental. Here we report a methodology to form RNA-containing condensates in living cells programmed to specifically recruit a single RNA species.
View Article and Find Full Text PDFThe fast-developing field of synthetic biology enables broad applications of programmed microorganisms including the development of whole-cell biosensors, delivery vehicles for therapeutics, or diagnostic agents. However, the lack of spatial control required for localizing microbial functions could limit their use and induce their dilution leading to ineffective action or dissemination. To overcome this limitation, the integration of magnetic properties into living systems enables a contact-less and orthogonal method for spatiotemporal control.
View Article and Find Full Text PDFNucleus centering in mouse oocytes results from a gradient of actin-positive vesicle activity and is essential for developmental success. Here, we analyze 3D model simulations to demonstrate how a gradient in the persistence of actin-positive vesicles can center objects of different sizes. We test model predictions by tracking the transport of exogenous passive tracers.
View Article and Find Full Text PDFThe diversity of functions achieved by living cells result from the collective behavior of biological components that interact through multiple scales in time and space. The cytoskeleton constitutes one canonical system forming dynamic organizations when interacting with molecular motors. These materials constitute a state of active matter that exhibit out-of-equilibrium behavior with oriented order in the presence of energy.
View Article and Find Full Text PDFLiquid-liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold ArtiG to generate concentration-dependent RNA-protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation.
View Article and Find Full Text PDFThe spatial regulation of messenger RNA (mRNA) translation is central to cellular functions and relies on numerous complex processes. Biomimetic approaches could bypass these endogenous complex processes, improve our comprehension of the regulation, and allow for controlling local translation regulations and functions. However, the causality between local translation and nascent protein function remains elusive.
View Article and Find Full Text PDFCoordination between actin filaments and microtubules is critical to complete important steps during cell division. For instance, cytoplasmic actin filament dynamics play an active role in the off-center positioning of the spindle during metaphase I in mouse oocytes [1-3] or in gathering the chromosomes to ensure proper spindle formation in starfish oocytes [4, 5], whereas cortical actin filaments control spindle rotation and positioning in adherent cells or in mouse oocytes [6-9]. Several molecular effectors have been found to facilitate anchoring between the meiotic spindle and the cortical actin [10-14].
View Article and Find Full Text PDFArtificial bio-based scaffolds offer broad applications in bioinspired chemistry, nanomedicine, and material science. One current challenge is to understand how the programmed self-assembly of biomolecules at the nanometre level can dictate the emergence of new functional properties at the mesoscopic scale. Here we report a general approach to design genetically encoded protein-based scaffolds with modular biochemical and magnetic functions.
View Article and Find Full Text PDFThe spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers.
View Article and Find Full Text PDFA microfluidic device is a powerful tool to manipulate in a controlled manner at spatiotemporal scales for biological systems. Here, we describe a simple diffusion-based assay to generate and measure the effect of biochemical perturbations within the cytoplasm of cell-free extracts from Xenopus eggs. Our approach comprises a microliter reservoir and a model cytoplasm that are separated by a synthetic membrane containing sub-micrometric pores through which small molecules and recombinant proteins can diffuse.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2016
Our ability to quantitatively control the spatiotemporal properties of cellular information processing is key for understanding biological systems at both mechanistic and systemic level. In this context, magnetic field offers a relevant strategy of control over cellular processes that broaden the toolbox currently available in cell biology. Among the increasing number of methods, we will focus on recent advances based on magnetic nanoparticles conjugated to proteins to trigger specific signaling pathways and cellular processes.
View Article and Find Full Text PDFLiving systems offer attractive strategies to generate nanoscale structures because of their innate functional properties such as the dynamic assembly of ordered nanometer fibers, the generation of mechanical forces, or the directional transport mediated by molecular motors. The design of hybrid systems, capable of interfacing artificial building blocks with biomolecules, may be a key step toward the rational design of nanoscale devices and materials. Here, we have designed a bottom-up approach to organize cytoskeletal elements in space using the self-assembly properties of magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation.
View Article and Find Full Text PDFIntracellular biochemical reactions are often localized in space and time, inducing gradients of enzymatic activity that may play decisive roles in determining cell's fate and functions. However, the techniques available to examine such enzymatic gradients of activity remain limited. Here, we propose a new method to engineer a spatial gradient of signaling protein concentration within Xenopus egg extracts using superparamagnetic nanoparticles.
View Article and Find Full Text PDF3-Methoxy-17α-ethynylestradiol or mestranol is a prodrug for ethynylestradiol and the estrogen component of some oral contraceptive formulations. We demonstrate here that a single core multimodal probe for imaging - SCoMPI - can be efficiently grafted onto mestranol allowing its tracking in two breast cancer cell lines, MDA-MB-231 and MCF-7 fixed cells. Correlative imaging studies based on luminescence (synchrotron UV spectromicroscopy, wide field and confocal fluorescence microscopies) and vibrational (AFMIR, synchrotron FTIR spectromicroscopy, synchrotron-based multiple beam FTIR imaging, confocal Raman microspectroscopy) spectroscopies were consistent with one another and showed a Golgi apparatus distribution of the SCoMPI-mestranol conjugate in both cell lines.
View Article and Find Full Text PDFDecisions on the fate of cells and their functions are dictated by the spatiotemporal dynamics of molecular signalling networks. However, techniques to examine the dynamics of these intracellular processes remain limited. Here, we show that magnetic nanoparticles conjugated with key regulatory proteins can artificially control, in time and space, the Ran/RCC1 signalling pathway that regulates the cell cytoskeleton.
View Article and Find Full Text PDFIn vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary.
View Article and Find Full Text PDFA rhenium tris-carbonyl derivative has been designed to couple infrared and luminescent detection in cells. Both spectroscopies are consistent with one another; they point out the reliability of the present SCoMPI (for Single Core Multimodal Probe for Imaging) for bimodal imaging and unambiguously indicate a localization at the Golgi apparatus in MDA-MB-231 breast cancer cells.
View Article and Find Full Text PDF1,1-Di(4-hydroxyphenyl)-2-cyrhetrenylbut-1-ene 1 is an organometallic conjugate where a [(Cp)Re(CO)(3)] unit is linked to a hydroxytamoxifen-like structure. Its subcellular nuclear distribution was previously observed in a single cell using the near-field technique AFMIR. We show here that synchrotron radiation FTIR spectromicroscopy (SR-FTIR-SM) enabled the mapping of 1 based on its IR-signature (characteristic bands in the 1850-2200 cm(-1) range) and pointed out the colocalization of 1 with an area of high amide density.
View Article and Find Full Text PDFThe production of micron-size droplets using microfluidic tools offers new opportunities to carry out biological assays in a controlled environment. We apply these strategies by using a flow-focusing microfluidic device to encapsulate Xenopus egg extracts, a biological system recapitulating key events of eukaryotic cell functions in vitro. We present a method to generate monodisperse egg extract-in-oil droplets and use high-speed imaging to characterize the droplet pinch-off dynamics leading to the production of trains of droplets.
View Article and Find Full Text PDFThe use of the semiconductor quantum dots (QD) as biolabels for both ensemble and single-molecule tracking requires the development of simple and versatile methods to target individual proteins in a controlled manner, ideally in living cells. To address this challenge, we have prepared small and stable QDs (QD-ND) using a surface coating based on a peptide sequence containing a tricysteine, poly(ethylene glycol) (PEG), and an aspartic acid ligand. These QDs, with a hydrodynamic diameter of 9 +/- 1.
View Article and Find Full Text PDF