Publications by authors named "Guerini D"

Although adenosine deaminase 2 (ADA2) is considered an extracellular ADA, evidence questions the physiological relevance of this activity. Our study reveals that ADA2 localizes within the lysosomes, where it is targeted through modifications of its glycan structures. We show that ADA2 interacts with DNA molecules, altering their sequences by converting deoxyadenosine (dA) to deoxyinosine (dI).

View Article and Find Full Text PDF
Article Synopsis
  • STING is a key player in sensing cytosolic nucleic acids and regulating type I interferon responses, making it a target for drug discovery due to its role in various diseases.* -
  • The study identifies a compound called AK59 that can degrade STING by utilizing the HERC4 E3 ligase, which may allow for targeting proteins traditionally considered "undruggable."* -
  • AK59 is effective against common STING mutations, indicating its potential for clinical applications and introducing HERC4 into the conversation around targeted protein degradation.*
View Article and Find Full Text PDF

The cGAS STING pathway has received much attention in recent years, and it has been recognized as an important component of the innate immune response. Since the discovery of STING and that of cGAS, many observations based on preclinical models suggest that the faulty regulation of this pathway is involved in many type I IFN autoinflammatory disorders. Evidence has been accumulating that cGAS/STING might play an important role in pathologies beyond classical immune diseases, as in, for example, cardiac failure.

View Article and Find Full Text PDF

Inflammatory responses are crucial for regeneration following peripheral nerve injury (PNI). PNI triggers inflammatory responses at the site of injury. The DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream effector stimulator of interferon genes (STING) sense foreign and self-DNA and trigger type I interferon (IFN) immune responses.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels.

View Article and Find Full Text PDF

SPPL2a (Signal Peptide Peptidase Like 2a) is an intramembrane aspartyl protease engaged in the function of B-cells and dendritic cells. Despite being an attractive target for modulation of the immune system, selective SPPL2a inhibitors are barely described in the literature. Recently, we have disclosed a selective, small molecular weight agent SPL-707 which confirmed that pharmacological inhibition of SPPL2a leads to the accumulation of its substrate CD74/p8 and as a consequence to a reduction in the number of B-cells as well as myeloid dendritic cells in mice.

View Article and Find Full Text PDF

Signal peptide peptidase-like 2a (SPPL2a) is an aspartic intramembrane protease which has recently been shown to play an important role in the development and function of antigen presenting cells such as B lymphocytes and dendritic cells. In this paper, we describe the discovery of the first selective and orally active SPPL2a inhibitor (S)-2-cyclopropyl-N1-((S)-5,11-dioxo-10,11-dihydro-1H,3H,5H-spiro[benzo[d]pyrazolo[1,2-a][1,2]diazepine-2,1'-cyclopropan]-10-yl)-N4-(5-fluoro-2-methylpyridin-3-yl)succinamide 40 (SPL-707). This compound shows adequate selectivity against the closely related enzymes γ-secretase and SPP and a good pharmacokinetic profile in mouse and rat.

View Article and Find Full Text PDF

Pathogenic gain-of-function variants in the genes encoding phosphoinositide 3-kinase δ (PI3Kδ) lead to accumulation of transitional B cells and senescent T cells, lymphadenopathy, and immune deficiency (activated PI3Kδ syndrome [APDS]). Knowing the genetic etiology of APDS afforded us the opportunity to explore PI3Kδ inhibition as a precision-medicine therapy. Here, we report in vitro and in vivo effects of inhibiting PI3Kδ in APDS.

View Article and Find Full Text PDF

The intramembrane protease signal peptide peptidase-like 2a (SPPL2a) is a potential drug target for the treatment of autoimmune diseases due to an essential role in B cells and dendritic cells. To screen a library of 1.4 million compounds for inhibitors of SPPL2a, we developed an imaging assay detecting nuclear translocation of the proteolytically released cytosolic substrate fragment.

View Article and Find Full Text PDF

Background And Purpose: The molecular mechanism underlying the clinical efficacy of FTY720-P is thought to involve persistent internalization and enhanced degradation of the S1P1 receptor subtype (S1P1R). We have investigated whether receptor binding kinetics and β-arrestin recruitment could play a role in the persistent internalization of the S1P1R by FTY720-P.

Experimental Approach: [(3) H]-FTY720-P and [(33) P]-S1P were used to label CHO-S1P1/3Rs for binding studies.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS.

View Article and Find Full Text PDF

Lymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P(1)), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P(1) receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P(1) antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing.

View Article and Find Full Text PDF

Background And Purpose: BAF312 is a next-generation sphingosine 1-phosphate (S1P) receptor modulator, selective for S1P(1) and S1P(5 ) receptors. S1P(1) receptors are essential for lymphocyte egress from lymph nodes and a drug target in immune-mediated diseases. Here, we have characterized the immunomodulatory potential of BAF312 and the S1P receptor-mediated effects on heart rate using preclinical and human data.

View Article and Find Full Text PDF

Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2.

View Article and Find Full Text PDF

High throughput screening and hit to lead optimization led to the identification of 'carene' as a promising scaffold showing selective S1P(1) receptor agonism. In parallel to this work we have established a pharmacophore model for the S1P(1) receptor highlighting the minimal structural requirement necessary for potent receptor agonism.

View Article and Find Full Text PDF

Targeting sphingosine-1-phosphate receptors with the oral immunomodulator drug FTY720 (fingolimod) has demonstrated substantial efficacy in the treatment of multiple sclerosis. The drug is phosphorylated in vivo, and most of the clinical effects of FTY720-phosphate (FTY720P) are thought to be mediated via S1P1 receptors on lymphocytes and endothelial cells, leading to sequestration of lymphocytes in secondary lymphoid organs. FTY720P was described to act as a "functional antagonist" by promoting efficient internalization of S1P1 receptors.

View Article and Find Full Text PDF

The intracellular modification of proteins by the addition of a single O-linked N-acetylglucosamine (O-GlcNAc) molecule is a ubiquitous post-translational modification in eukaryotic cells. It is catalysed by O-linked N-acetylglucosaminyltransferase, which attaches O-GlcNAc to serine/threonine residues, and it is counter-regulated by beta-N-acetylglucosaminidase, which is the antagonistic glycosidase that removes the O-GlcNAc group. O-GlcNAc modification competes with phosphorylation by protein kinases at similar sites, thereby affecting important signalling nodes.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are important targets for medicinal agents. Four different G protein families, G(s), G(i), G(q), and G(12), engage in their linkage to activation of receptor-specific signal transduction pathways. G(12) proteins were more recently studied, and upon activation by GPCRs they mediate activation of RhoGTPase guanine nucleotide exchange factors (RhoGEFs), which in turn activate the small GTPase RhoA.

View Article and Find Full Text PDF

A sphingosine-1-phosphate (S1P) analogue containing a terminal alkyl chain amino group is synthesized in a few steps via olefin cross-metathesis of an optically resolved intermediate and subsequent phosphorylation. Regioselective acylation of this intermediate at its N terminus in solution is demonstrated as a model reaction and provides a biologically active derivative. Finally, the omega-amino intermediate is immobilized on an affinity matrix.

View Article and Find Full Text PDF

The dynamic modification of nuclear and cytoplasmic proteins with O-linked beta-N-acetylglucosamine (O-GlcNAc) by the O-linked N-acetylglucosaminyltransferase (OGT) is a regulatory post-translational modification that is responsive to various stimuli. Here, we demonstrate that OGT is a central factor for T- and B-lymphocytes activation. SiRNA-mediated knockdown of OGT in T cells leads to an impaired activation of the transcription factors NFAT and NFkappaB.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) receptors are widely expressed in the central nervous system where they are thought to regulate glia cell function. The phosphorylated version of fingolimod/FTY720 (FTY720P) is active on a broad spectrum of S1P receptors and the parent compound is currently in phase III clinical trials for the treatment of multiple sclerosis. Here, we aimed to identify which cell type(s) and S1P receptor(s) of the central nervous system are targeted by FTY720P.

View Article and Find Full Text PDF

To elucidate the physiological function of sphingosine 1-phosphate receptors 1-3 (S1P1-3) we aimed to identify selective ligands for these GPCRs. S1P2 and S1P3 are coupled to Gq, and are, therefore, linked to the phospholipase C/IP3/calcium pathway. S1P1 is solely coupled to Gi and was artificially linked to calcium signaling by coexpression of Galpha 16.

View Article and Find Full Text PDF

FTY720 is an immunomodulator with demonstrated efficacy in a phase II trial of relapsing multiple sclerosis. FTY720-phosphate, the active metabolite generated upon phosphorylation in vivo, acts as a potent agonist on four of the five known sphingosine-1-phosphate (S1P(1)) receptors. AUY954, an aminocarboxylate analog of FTY720, is a low nanomolar, monoselective agonist of the S1P(1) receptor.

View Article and Find Full Text PDF

Constrained azacyclic analogues of FTY720 were prepared starting with d- and l-pyroglutamic acids. One enantiomer was shown to be a substrate for sphingosine kinase 2, being phosphorylated 4-fold more efficiently than FTY720. Among the corresponding phosphates, two were found to have unusual specificity in binding to S1P receptors: while being inactive on S1P1 and S1P3, they acted as potent agonists on S1P4 and S1P5.

View Article and Find Full Text PDF