Publications by authors named "Guerard M"

Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of the endogenous signaling ligand 2-arachidonoylglycerol, a neuroprotective endocannabinoid intimately linked to central nervous system (CNS) disorders associated with neuroinflammation. In the quest for novel MAGL inhibitors, a focused screening approach on a Roche library subset provided a reversible benzoxazinone hit exhibiting high ligand efficiency. The subsequent design of the three-dimensional -hexahydro-pyrido-oxazinone (-HHPO) moiety as benzoxazinone replacement enabled the combination of high MAGL potency with favorable ADME properties.

View Article and Find Full Text PDF

Objectives: The current recommended treatment for severe fetal anemia is transfusion (IUT). During this procedure, the evaluation of the necessary volume of transfused blood is based on regular measurement of fetal hemoglobin (FHb) concentration. The gold standard measurement is performed in the biology laboratory.

View Article and Find Full Text PDF

While there are dedicated guidelines for industry regarding the assessment of the genotoxic potential of new pharmaceuticals and impurities, and the general safety assessment of major drug metabolites, only limited guidance exists on the assessment of potential genotoxic minor drug metabolites. In this Perspective, we discuss challenges associated with assessing the genotoxic potential of human metabolites and share five case studies within the context of an "aware-avoid-assess" paradigm. A special focus is on a class of potentially genotoxic carcinogens, aromatic amines (arylamines and anilines).

View Article and Find Full Text PDF

A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset.

View Article and Find Full Text PDF

SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients.

View Article and Find Full Text PDF

The potential of 4-chloro-ortho-toluidine (4-CloT), an aromatic amine substituted on the ortho- and para-position of the amine function, to induce DNA damage in male Wistar rats was evaluated with the micronucleus test (peripheral blood), Pig-a (peripheral blood), and comet assay (peripheral blood, liver, urinary bladder, jejunum) at several time points. In addition to those markers of DNA damage, ie, gene mutation and clastogenicity, standard hematology, including methemoglobin, histopathology and immunohistochemistry of γ-H2AX and Ki-67 in liver, jejunum, and urinary bladder were performed. 4-CloT was administered orally over 28 consecutive days (days 1-28), followed by a 28-day treatment-free (days 29-56), and a second dosing phase of 3 days (days 57-59).

View Article and Find Full Text PDF

Many Receptor Tyrosine Kinases translocate from the cell surface to the nucleus in normal and pathological conditions, including cancer. Here we report the nuclear expression of insulin-like growth factor-1 receptor (IGF1R) in primary human lung tumours. Using lung cancer cell lines and lung tumour xenografts, we demonstrate that the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib induces the nuclear accumulation of IGF1R in mucinous lung adenocarcinoma by a mechanism involving the intracellular re-localization of the growth factor amphiregulin.

View Article and Find Full Text PDF

In the original publication, Table 1 was incorrect (differences in the numerators of the fractions). The correct version of Table 1 (sums in the numerators) is given below.

View Article and Find Full Text PDF

The benchmark dose (BMD) concept is increasingly utilized to analyze quantitative dose-response relationships in genetic toxicology. This methodology requires the user (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluated a multiplexed in vitro genotoxicity assay called the MultiFlow DNA Damage Kit, which uses flow cytometry to analyze DNA damage in cells and categorize chemicals based on their genotoxic effects.
  • - Conducted across seven laboratories, the assay tested 84 reference chemicals and involved exposure of TK6 cells, followed by flow cytometric analysis to determine the predominant mode of action (MoA) of the chemicals.
  • - Results showed high sensitivity, specificity, and agreement (≥ 92%) across different labs, indicating that this assay can effectively and reliably classify new chemicals' genotoxic potentials using either of the two proposed data analysis strategies.
View Article and Find Full Text PDF

Over the last decade, single stranded oligonucleotides (ON) have gained increased attention as a new drug modality. Because the assessment of genotoxicity risk during early development of pharmaceuticals is essential, we evaluated the potential of locked nucleic acids (LNA)-ONs to induce DNA damage in L5178Y tk cells both with the mouse lymphoma assay (MLA) and the micronucleus test (MNT). Further, the MLA was performed to assess gene and chromosome mutation over 3 and 24h (± metabolic activation).

View Article and Find Full Text PDF

Temozolomide (TMZ), a monofunctional alkylating agent, was selected as a model compound to determine its quantitative genotoxic dose-response relationship in different tissues (blood, liver, and jejunum) and endpoints [Pig-a-, comet-, and micronucleus assay (MNT)] in male rats. TMZ was administered p.o.

View Article and Find Full Text PDF

Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe).

View Article and Find Full Text PDF

Background: This is an update to our 2012 publication on clinical trial considerations on male contraception and collection of pregnancy information from female partner, after critical review of recent (draft) guidances released by the International Council for Harmonisation [ICH] the Clinical Trial Facilitation Group [CTFG] and the US Food & Drug Administration [FDA].

Methods: Relevant aspects of the new guidance documents are discussed in the context of male contraception and pregnancy reporting from female partner in clinical trials and the approach is updated accordingly.

Results: Genotoxicity The concept of a threshold is introduced using acceptable daily intake/permissible daily exposure to define genotoxicity requirements, hence highly effective contraception in order to avoid conception.

View Article and Find Full Text PDF

The ICH S6(R1) recommendations on safety evaluation of biotherapeutics have led to uncertainty in determining what would constitute a cause for concern that would require genotoxicity testing. A Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee Workgroup was formed to review the current practice of genotoxicity assessment of peptide/protein-related biotherapeutics. There are a number of properties of peptide/protein-related biotherapeutics that distinguish such products from traditional 'small molecule' drugs and need to be taken into consideration when assessing whether genotoxicity testing may be warranted and if so, how to do it appropriately.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a cell surface receptor that has an essential role in cell proliferation and survival, and overexpression of EGFR is a common feature of human cancers. In Non-small-cell lung cancer (NSCLC), activating mutations of EGFR have also been described. We recently showed that mutant EGFR-L858R inhibits the expression of the p14ARF tumor-suppressor protein to promote cell survival.

View Article and Find Full Text PDF

Methyl methanesulfonate, a well-known direct-acting genotoxicant, was assessed in a multi-endpoint study in rats using six closely spaced dose levels. The main goal of the study was to investigate the genotoxic response at very low doses and to analyse this response with dedicated statistical tools in order to find a Point of Departure (PoD) and related metrics. Software packages like PROAST or EPA-BMDS require the toxicologist to define a so-called critical effect size (CES) or benchmark response (BMR) and this choice has a large impact on the result of the PoD calculation.

View Article and Find Full Text PDF

To compare the extent of potential inter-laboratory variability and the influence of different comet image analysis systems, in vivo comet experiments were conducted using the genotoxicants ethyl methanesulfonate and methyl methanesulfonate. Tissue samples from the same animals were processed and analyzed-including independent slide evaluation by image analysis-in two laboratories with extensive experience in performing the comet assay. The analysis revealed low inter-laboratory experimental variability.

View Article and Find Full Text PDF

This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species.

View Article and Find Full Text PDF

This report summarizes the discussion, conclusions, and points of consensus of the IWGT Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (QWG) based on a meeting in Foz do Iguaçu, Brazil October 31-November 2, 2013. Topics addressed included (1) the need for quantitative dose-response analysis, (2) methods to analyze exposure-response relationships & derive point of departure (PoD) metrics, (3) points of departure (PoD) and mechanistic threshold considerations, (4) approaches to define exposure-related risks, (5) empirical relationships between genetic damage (mutation) and cancer, and (6) extrapolations across test systems and species. This report discusses the first three of these topics and a companion report discusses the latter three.

View Article and Find Full Text PDF

In genetic toxicology, risk assessment has traditionally adopted linear dose-responses for any compound that causes genotoxic effects. Increasing evidence of non-linear dose-responses, however, suggests potential cellular tolerance to low levels of many genotoxicants with diverse modes of action. Such putative non-linear dose-responses need to be substantiated by strong mechanistic data that identifies the mechanisms responsible for the tolerance to low doses.

View Article and Find Full Text PDF

In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by the ICH S2(R1) guideline. This paper summarizes a survey suggested by the Safety Working Party of European Medicines Agency (EMA), and conducted by the European Federation of Pharmaceutical Industries and Associations (EFPIA) to investigate the experience among European pharmaceutical companies by conducting the in vivo comet assay for regulatory purpose. A special focus was given on the typology of the obtained results and to identify potential difficulties encountered with the interpretation of study data.

View Article and Find Full Text PDF

The incidence of micronucleated-cells is considered to be a marker of a genotoxic event and can be caused by direct- or indirect-DNA reactive mechanisms. In particular, small increases in the incidence of micronuclei, which are not associated with toxicity in the target tissue or any structurally altering properties of the compound, trigger the suspicion that an indirect mechanism could be at play. In a bone marrow micronucleus test of a synthetic peptide (a dual agonist of the GLP-1 and GIP receptors) that had been integrated into a regulatory 13-week repeat-dose toxicity study in the rat, small increases in the incidence of micronuclei had been observed, together with pronounced reductions in food intake and body weight gain.

View Article and Find Full Text PDF