Retinal ganglion cells (RGCs) are the neuronal connections between the eye and the brain conveying multiple features of the outside world through parallel pathways. While there is a large body of literature on how these pathways arise in the retinal network, the process of converting presynaptic inputs into RGC spiking output is little understood. In this study, we show substantial differences in the spike generator across three types of αRGCs in female and male mice, the αON sustained, αOFF sustained, and αOFF transient RGC.
View Article and Find Full Text PDFHere shows that electrical impedance spectroscopy can be used as a non-invasive and real time tool to probe cell adhesion and differentiation from midbrain floor plate progenitors into midbrain neurons on Au electrodes coated with human laminin. The electrical data and equivalent circuit modeling are consistent with standard microscopy analysis and reveal that within the first 6 hours progenitor cells sediment and attach to the electrode within 40 hours. Between 40 and 120 hours, midbrain progenitor cells differentiate into midbrain neurons, followed by an electrochemically stable maturation phase.
View Article and Find Full Text PDFIn recent years, multielectrode arrays and large silicon probes have been developed to record simultaneously between hundreds and thousands of electrodes packed with a high density. However, they require novel methods to extract the spiking activity of large ensembles of neurons. Here, we developed a new toolbox to sort spikes from these large-scale extracellular data.
View Article and Find Full Text PDFPurpose: Hypothermia has been shown to be neuroprotective in the therapy of ischemic stroke in the brain. To date no studies exist on the level of the inner retina and it is unclear if hypothermia would prolong the ischemic tolerance time of retinal ganglion cells, which are decisive in many ischemic retinopathies.
Methods: Bovine eyes were enucleated and stored either at 21°C or 37°C for 100 or 340 minutes, respectively.
In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current.
View Article and Find Full Text PDF