Publications by authors named "Guenter Reuter"

Optical stimulation for hearing restoration is developing as an alternative therapy to electrical stimulation. For a more frequency-specific activation of the auditory system, light-guiding fibres need to be inserted into the coiled cochlea. To enable insertion with minimal trauma, glass fibres embedded in silicone were used as models.

View Article and Find Full Text PDF

Cochlea implants (CI) restore the hearing in patients with sensorineural hearing loss by electrical stimulation of the auditory nerve via an electrode array. The increase of the impedance at the electrode-tissue interface due to a postoperative connective tissue encapsulation leads to higher power consumption of the implants. Therefore, reduced adhesion and proliferation of connective tissue cells around the CI electrode array is of great clinical interest.

View Article and Find Full Text PDF

One goal in biomaterials research is to limit the formation of connective tissue around the implant. Antiwetting surfaces are known to reduce ability of cells to adhere. Such surfaces can be achieved by special surface structures (lotus effect).

View Article and Find Full Text PDF

The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs.

View Article and Find Full Text PDF

The hearing performance with conventional hearing aids and cochlear implants is dramatically reduced in noisy environments and for sounds more complex than speech (e. g. music), partially due to the lack of localized sensorineural activation across different frequency regions with these devices.

View Article and Find Full Text PDF

Cochlear implants (CIs) can restore hearing in deaf patients by electrical stimulation of the auditory nerve. To optimize the electrical stimulation, the number of independent channels must be increased by reduction of connective tissue growth on the electrode surface and selective neuronal cell contact. The femtosecond laser microstructuring of the electrode surfaces was performed to investigate the effect of fibroblast growth on the implant material.

View Article and Find Full Text PDF

The auditory midbrain implant (AMI) is a new central auditory prosthesis designed for penetrating stimulation of the human inferior colliculus. The major group of candidates for the AMI consists of neurofibromatosis type 2 (NF2) patients who develop neural deafness because of growth and/or surgical removal of bilateral acoustic neuromas. Because of the absence of a viable auditory nerve, these patients cannot benefit from cochlear implants.

View Article and Find Full Text PDF