Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment.
View Article and Find Full Text PDFConventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
Brain-computer interface (BCI) systems translate brain activity into messages or commands. BCI studies that record from a dozen or more subjects typically report substantial variations in performance, as measured by accuracy. Usually, some subjects attain excellent (even perfect) accuracy, while at least one subject performs so poorly that effective communication would not be possible with that BCI.
View Article and Find Full Text PDFMost brain-computer interfaces (BCIs) rely on one of three types of signals in the electroencephalogram (EEG): P300s, steady-state visually evoked potentials, and event-related desynchronization. EEG is typically recorded non-invasively with electrodes mounted on the human scalp using conductive electrode gel for optimal impedance and data quality. The use of electrode gel entails serious problems that are especially pronounced in real-world settings when experts are not available.
View Article and Find Full Text PDFAn EEG-based brain-computer system can be used to control external devices such as computers, wheelchairs or Virtual Environments. One of the most important applications is a spelling device to aid severely disabled individuals with communication, for example people disabled by amyotrophic lateral sclerosis (ALS). P300-based BCI systems are optimal for spelling characters with high speed and accuracy, as compared to other BCI paradigms such as motor imagery.
View Article and Find Full Text PDF