Objective: The aim of the current research was the development hard cellulose capsules containing cefpodoxime proxetil (CEF) (BCS-Class II) encapsulated nanospheres of inclusion complexes with β-CD, HP-β-CD and M-β-CD for efficient antibacterial therapy.
Significance: The reason for this phenomenon is to bring an innovative approach to effective oral antimicrobial therapy with hard cellulose capsules containing spray dried nanospheres of CEF with β-CD, HP-β-CD and M-β-CD by means of increased solubility, dissolution rate and improved antibacterial efficiency with lower oral dose.
Methods: Phase solubility analyses was performed to evaluate the drug/CD interaction, involving the stoichiometry and apparent stability constant.
The target of the current investigation was the delivery of oseltamivir phosphate (OSE) into the lung adenocarcinoma tissues by means of designing nanosized, non-toxic and biocompatible pegylated Eudragit based NPs and investigating their anticancer and antiangiogenic activity. The rationale for this strategy is to provide a novel perspective to cancer treatment with OSE loaded pegylated ERS NPs under favor of smaller particle size, biocompatible feature, cationic characteristic, examining their selective effectiveness on lung cell lines (A549 lung cancer cell line and CCD-19Lu normal cell line) and examining antiangiogenic activity by in vivo CAM analysis. For this purpose, OSE encapsulated pegylated ERS based NPs were developed and investigated for zeta potential, particle size, encapsulation efficiency, morphology, DSC, FT-IR, H NMR analyses.
View Article and Find Full Text PDFThe aim of this study was the development of hard-cellulose capsules containing cefpodoxime proxetil (CEF) (BCS Class II) loaded novel Pluronic F127 (P127)/Polyvinylpyrrolidone K30 (PVP) solid dispersions (SDs) using ultrasonic probe induced solvent-lyophilization method for effective antibacterial treatment by means of improved saturated aqueous solubility, dissolution rate, reduced particle size, and wettability. SDs were evaluated for physical and solid-state analyses. The solubility of pure CEF was calculated as 0.
View Article and Find Full Text PDFThe purpose of this study was the design ibuprofen (IBU)-loaded unique Eudragit RS 100 (ERS) and/or octadecylamine modified PLGA nanoparticles (NPs) for cancer treatment. The rational for this approach is to bring a new approach to cancer treatment with modification of IBU-loaded PLGA NPs with ERS and/or octadecylamine by means of smaller particle size (PS), cationic surface, biocompatible nature, and investigating their selective efficacy on lung cell lines (A549 lung cancer cell and CCD-19Lu normal cell line). IBU encapsulated PLGA-based NPs were prepared and characterized for physical and solid-state analyses.
View Article and Find Full Text PDFObjectives: The aim of the present study was to formulate levocetirizine hydrochloride (LCD)-loaded chitosan nanoparticles at submicron level with high entrapment efficiency and prolonged effect for optimizing the plasma drug concentration enhancing bioavailability.
Materials And Methods: LCD was successfully incorporated into chitosan nanoparticles by spray drying for the purpose of oral application. characteristics were evaluated in detail.
Objectives of this study were the delivery of gamma aminobutyric acid (GABA) into the brain by means of developing brain targeted, nanosized, non-toxic and biocompatible polymeric nanoparticles, and investigating their effectiveness in epilepsy. For this purpose, GABA conjugated N,N-dimethylacrylamide-based pegylated nanoparticles were designed and characterised for particle size, zeta potential, pH, morphology, DSC, XRD, FTIR, GABA quantification and in vitro release. Formulations showed smaller particle size, cationic zeta potential characteristic, possible GABA polymeric matrix interaction and prolonged release pattern.
View Article and Find Full Text PDF