The search for effective production of xylanase which is an important industrial enzyme led to the present study that explored xylanase production by SF through Taguchi optimization that incorporated nanoconjugates in submerged fermentation. Calcium and zinc oxide nanoconjugates biosynthesized by xylanase were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and Transmission electron microscopy (TEM). The xylanase-mediated calcium oxide and zinc oxide nanoconjugates with λ of 374 and 316 nm, respectively, and were 5.
View Article and Find Full Text PDFThis study optimized the simultaneous saccharification and citric acid (CA) production from banana pseudostem (BP). Thereafter, kinetic assessment of Aspergillus brasiliensis growth and CA production were determined for the optimum conditions using fresh water (SSF) or dairy wastewater (SSF) and compared to Sabouraud Dextrose Emmon's medium modified with BP (SSF). The optimized conditions gave a CA concentration of 14.
View Article and Find Full Text PDFThis study optimized the co-valorization of corn cob wastes (CCW) and dairy wastewater for simultaneous saccharification and lactic acid (LA) production (sDWW-SSF). Subsequently, the kinetics of Lactobacillus plantarum growth and LA production was assessed using the optimized conditions under microaerophilic (sDWW-SSF) and anaerobic (sDWW-SSF) conditions, and thereafter compared to De Man, Rogosa and Sharpe (MRS) medium modified with pretreated CCW (mMRS-SSF). Optimized sDWW-SSF conditions produced maximum LA concentration and conversion of 11.
View Article and Find Full Text PDFLignocellulosic biomass (LCB) is well suited to address present day energy and environmental concerns, since it is abundant, environmentally benign and sustainable. However, the commercial application of LCB has been limited by its recalcitrant structure. To date, several biomass pretreatment systems have been developed to address this major bottleneck but have shown to be toxic and costly.
View Article and Find Full Text PDFLignocellulosic waste has offered a cost-effective and food security-wise substrate for the generation of biofuels and value-added products. However, its recalcitrant properties necessitate pretreatment. Of the various pretreatment methods, alkaline techniques have gained prominence as efficient catalysts.
View Article and Find Full Text PDFThis study optimized an activated charcoal (AC) detoxification method for the reduction of three different fermentation inhibitor compounds, while minimising the reducing sugar loss from acid-pretreated sorghum leaf (SL) wastes. Process optimization demonstrated a 98%, 88% and 37% removal efficiency for furfural, 5-hydroxymethylfurfural (HMF) and acetic acid respectively, with a 7% reducing sugar loss. Subsequently, the logistic and modified Gompertz models were used to comparatively evaluate the kinetics of Saccharomyces cerevisiae growth and ethanol production using the non-detoxified (NDF) and optimized detoxified (ODF) substrate.
View Article and Find Full Text PDFThe search for biocompatible nanoparticles with vast applicability has impacted on exploration of various biomaterials for the synthesis of mono and bimetallic nanoparticles. Xylanase is widely regarded as an industrially important enzyme but its potentials in nanotechnological applications are yet to be fully explored. The current study investigates the exploit of xylanases of Aspergillus niger L3 (NE) and Trichoderma longibrachiatum L2 (TE) produced through valorization of corn-cob, to synthesize silver-gold alloy nanoparticles (Ag-AuNPs).
View Article and Find Full Text PDFThis study examines the kinetics of BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz and logistic models to the experimental data with high coefficients of determination R > 0.97.
View Article and Find Full Text PDFThis study developed two Artificial Neural Network (ANN) tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass. Pretreatment data from 90 experimental runs with 8 different input conditions were used to develop a microwave-based and a steam-based model. Both models exhibited high coefficients of determination (R) of 0.
View Article and Find Full Text PDFGreen synthesis of nanoparticles has fuelled the use of biomaterials to synthesise a variety of metallic nanoparticles. The current study investigates the use of xylanases of L3 (NEA) and L2 (TEA) to synthesise silver nanoparticles (AgNPs). Characterisation of AgNPs was carried out using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy, while their effectiveness as antimicrobial, antioxidant, catalytic, anticoagulant, and thrombolytic agents were determined.
View Article and Find Full Text PDFPhytosynthesis of silver nanoparticles (AgNPs) using leaf extract of () was the focus of this research work. The -AgNPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) study. Studies were made on the AgNPs for antibacterial, antifungal, anticoagulant, free-radical scavenging, and hydrogen peroxide scavenging activities.
View Article and Find Full Text PDFThis study investigates the simultaneous saccharification and fermentation (SSF) process for bioethanol production from corn cobs with prehydrolysis (PSSF) and without prehydrolysis (OSSF). Two response surface models were developed with high coefficients of determination (>0.90).
View Article and Find Full Text PDFThis study presents a sequential sodium phosphate dodecahydrate (NaPO·12HO) and zinc chloride (ZnCl) pretreatment to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of NaPO·12HO concentration (5-15%), ZnCl concentration (1-5%) and solid to liquid ratio (5-15%) on reducing sugar yield from corn cobs were investigated. The sequential pretreatment model was developed and optimized with a high coefficient of determination value (0.
View Article and Find Full Text PDFIn the current work, cell-free extracts of four strains of non-pathogenic Enterococcus species of food origin, were studied for the green synthesis of gold nanoparticles (AuNPs), and characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The AuNPs were evaluated for their Anopheles gambiae larvicidal, dye degradation, antioxidant and thrombolytic activities. The blue-black colloidal AuNPs which absorbed maximally at 549-552nm were nearly spherical in shape, and crystalline in nature with size of 8-50nm.
View Article and Find Full Text PDFThis study reports the profiling of volatile compounds generated during microwave-assisted chemical pre-treatment of sorghum leaves. Compounds including acetic acid (0-186.26ng/g SL), furfural (0-240.
View Article and Find Full Text PDFExopolysaccharide (EPS) production by a strain of Lentinus edodes was studied via the effects of treatments with ultraviolet (UV) irradiation and acridine orange. Furthermore, optimization of EPS production was studied using a genetic algorithm coupled with an artificial neural network in submerged fermentation. Exposure to irradiation and acridine orange resulted in improved EPS production (2.
View Article and Find Full Text PDFThis study investigated the green biosynthesis of gold (Au) and silver-gold alloy (Ag-Au) nanoparticles using cell-free extract of Bacillus safensis LAU 13 strain (GenBank accession No: KJ461434). The biosynthesized AuNPs and Ag-AuNPs were characterized using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. Evaluation of the antifungal activities, degradation of malachite green, anti-coagulation of blood, and thrombolysis of human blood clot by the biosynthesized nanoparticles were investigated.
View Article and Find Full Text PDFBiotechnol Biotechnol Equip
January 2015
A newly isolated bacterium identified as based on biochemical tests and 16S rRNA analysis and its mutant variant created by exposure to ultraviolet radiation at 254 nm were investigated for keratinolytic activity. The wild-type strain produced 35.4-50.
View Article and Find Full Text PDFBiosynthesis of silver nanoparticles (AgNPs) using nest extract of paper wasp (Polistes sp) was investigated in this work. The AgNPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), and evaluated for antibacterial, antifungal, dye degradation, blood anticoagulation, and blood clot dissolution (thrombolytic) activities. The crystalline polydispersed AgNPs with size range of 12.
View Article and Find Full Text PDFThe acidification behavior of Lactobacillus bulgaricus and Streptococcus thermophilus for yoghurt production was investigated along temperature profiles within the optimal window of 38-44 degrees C. For the optimal acidification temperature profile search, an optimization engine module built on a modular artificial neural network (ANN) and genetic algorithm (GA) was used. Fourteen batches of yoghurt fermentations were evaluated using different temperature profiles in order to train and validate the ANN sub-module.
View Article and Find Full Text PDF