Publications by authors named "Guee-Sang Lee"

Detecting dense text in scene images is a challenging task due to the high variability, complexity, and overlapping of text areas. To adequately distinguish text instances with high density in scenes, we propose an efficient approach called DenseTextPVT. We first generated high-resolution features at different levels to enable accurate dense text detection, which is essential for dense prediction tasks.

View Article and Find Full Text PDF

Human facial emotion detection is one of the challenging tasks in computer vision. Owing to high inter-class variance, it is hard for machine learning models to predict facial emotions accurately. Moreover, a person with several facial emotions increases the diversity and complexity of classification problems.

View Article and Find Full Text PDF

Speech emotion recognition (SER) is one of the most exciting topics many researchers have recently been involved in. Although much research has been conducted recently on this topic, emotion recognition via non-verbal speech (known as the vocal burst) is still sparse. The vocal burst is concise and has meaningless content, which is harder to deal with than verbal speech.

View Article and Find Full Text PDF

Segmentation of liver tumors from Computerized Tomography (CT) images remains a challenge due to the natural variation in tumor shape and structure as well as the noise in CT images. A key assumption is that the performance of liver tumor segmentation depends on the characteristics of multiple features extracted from multiple filters. In this paper, we design an enhanced approach based on a two-class (liver, tumor) convolutional neural network that discriminates tumor as well as liver from CT images.

View Article and Find Full Text PDF

Besides facial or gesture-based emotion recognition, Electroencephalogram (EEG) data have been drawing attention thanks to their capability in countering the effect of deceptive external expressions of humans, like faces or speeches. Emotion recognition based on EEG signals heavily relies on the features and their delineation, which requires the selection of feature categories converted from the raw signals and types of expressions that could display the intrinsic properties of an individual signal or a group of them. Moreover, the correlation or interaction among channels and frequency bands also contain crucial information for emotional state prediction, and it is commonly disregarded in conventional approaches.

View Article and Find Full Text PDF

One essential step in radiotherapy treatment planning is the organ at risk of segmentation in Computed Tomography (CT). Many recent studies have focused on several organs such as the lung, heart, esophagus, trachea, liver, aorta, kidney, and prostate. However, among the above organs, the esophagus is one of the most difficult organs to segment because of its small size, ambiguous boundary, and very low contrast in CT images.

View Article and Find Full Text PDF

Background: The Cox proportional hazards model is commonly used to predict hazard ratio, which is the risk or probability of occurrence of an event of interest. However, the Cox proportional hazard model cannot directly generate an individual survival time. To do this, the survival analysis in the Cox model converts the hazard ratio to survival times through distributions such as the exponential, Weibull, Gompertz or log-normal distributions.

View Article and Find Full Text PDF

Emotion recognition plays an important role in human-computer interactions. Recent studies have focused on video emotion recognition in the wild and have run into difficulties related to occlusion, illumination, complex behavior over time, and auditory cues. State-of-the-art methods use multiple modalities, such as frame-level, spatiotemporal, and audio approaches.

View Article and Find Full Text PDF

Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels.

View Article and Find Full Text PDF

Objective: This article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on computed tomography (CT) examinations.

Methods: We developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections.

Results: The scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing data set of CT examinations.

View Article and Find Full Text PDF