Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified.
View Article and Find Full Text PDFSignal peptide peptidase (SPP), its homologs, the SPP-like proteases SPPL2a/b/c and SPPL3, as well as presenilin, the catalytic subunit of the γ-secretase complex, are intramembrane-cleaving aspartyl proteases of the GxGD type. In this study, we identified the 18-kDa leader peptide (LP18) of the foamy virus envelope protein (FVenv) as a new substrate for intramembrane proteolysis by human SPPL3 and SPPL2a/b. In contrast to SPPL2a/b and γ-secretase, which require substrates with an ectodomain shorter than 60 amino acids for efficient intramembrane proteolysis, SPPL3 cleaves mutant FVenv lacking the proprotein convertase cleavage site necessary for the prior shedding.
View Article and Find Full Text PDFRegulated intramembrane proteolysis is a widely accepted concept describing the processing of various transmembrane proteins via ectodomain shedding followed by an intramembrane cleavage. The resulting cleavage products can be involved in reverse signaling. Presenilins, which constitute the active center of the γ-secretase complex, signal peptide peptidase (SPP), and its homologues, the SPP-like (SPPL) proteases are members of the family of intramembrane-cleaving aspartyl proteases of the GXGD-type.
View Article and Find Full Text PDFNicastrin is a type I transmembrane glycoprotein, which is part of the high molecular weight γ-secretase complex. γ-Secretase is one of the key players associated with the generation of Alzheimer's disease pathology, since it liberates the neurotoxic amyloid β-peptide. Four proteins Nicastrin, anterior pharynx-defective-1 (Aph-1), presenilin enhancer-2 (Pen-2) and Presenilin are essential to form the active γ-secretase complex.
View Article and Find Full Text PDFMore than 150 familial Alzheimer disease (FAD)-associated missense mutations in presenilins (PS1 and PS2), the catalytic subunit of the gamma-secretase complex, cause aberrant amyloid beta-peptide (Abeta) production, by increasing the relative production of the highly amyloidogenic 42-amino acid variant. The molecular mechanism behind this pathological activity is unclear, and different possibilities ranging from a gain of function to a loss of function have been discussed. gamma-Secretase, signal peptide peptidase (SPP) and SPP-like proteases (SPPLs) belong to the same family of GXGD-type intramembrane cleaving aspartyl proteases and share several functional similarities.
View Article and Find Full Text PDFGamma-secretase and signal peptide peptidase (SPP) are unusual GxGD aspartyl proteases, which mediate intramembrane proteolysis. In addition to SPP, a family of SPP-like proteins (SPPLs) of unknown function has been identified. We demonstrate that SPPL2b utilizes multiple intramembrane cleavages to liberate the intracellular domain of tumor necrosis factor alpha (TNFalpha) into the cytosol and the carboxy-terminal counterpart into the extracellular space.
View Article and Find Full Text PDF