The emergence of quantum magnetism in nanographenes provides ample opportunities to fabricate purely organic devices for spintronics and quantum information. Although heteroatom doping is a viable way to engineer the electronic properties of nanographenes, the synthesis of doped nanographenes with collective quantum magnetism remains elusive. Here, a set of nitrogen-doped nanographenes (N-NGs) with atomic precision are fabricated on Au(111) through a combination of imidazole [2+2+2]-cyclotrimerization and cyclodehydrogenation reactions.
View Article and Find Full Text PDFUnlike classic spins, quantum magnets are spin systems that interact via the exchange interaction and exhibit collective quantum behaviours, such as fractional excitations. Molecular magnetism often stems from d/f-transition metals, but their spin-orbit coupling and crystal field induce a significant magnetic anisotropy, breaking the rotation symmetry of quantum spins. Thus, it is of great importance to build quantum nanomagnets in metal-free systems.
View Article and Find Full Text PDFIn order to study the emergence of homochirality during complex molecular systems, most works mainly concentrated on the resolution of a pair of enantiomers. However, the preference of homochiral over heterochiral isomers has been overlooked, with very limited examples focusing only on noncovalent interactions. We herein report on of twin-cavity cages (denoted as ) against heterochiral tris-(2-aminopropyl)amine (TRPN) bearing triple stereocenters.
View Article and Find Full Text PDFBy combining angle-resolved photoemission spectroscopy, scanning tunneling microscopy, atomic force microscope based piezoresponse force microscopy and first-principles calculations, we have studied the low-energy band structure, atomic structure, and charge polarization on the surface of a topological semimetal candidate TaNiTe_{5}. Dirac-like surface states were observed on the (010) surface by angle-resolved photoemission spectroscopy, consistent with the first-principles calculations. On the other hand, piezoresponse force microscopy reveals a switchable ferroelectriclike polarization on the same surface.
View Article and Find Full Text PDF