Publications by authors named "Guazzone V"

The main functions of the testis, steroidogenesis and spermatogenesis, depend on the endocrine axis and systemic and local tolerance mechanisms. Infectious or non-infectious diseases may disturb testicular immune regulation causing infertility. Literature has illustrated that bacterial and viral infections lead to autoimmune infertility: either sperm antibodies or autoimmune epidydimo-orchitis.

View Article and Find Full Text PDF

Experimental autoimmune orchitis (EAO) is a useful model to study organ-specific autoimmunity and chronic testicular inflammation. This model reflects testicular pathological changes reported in immunological infertility in men. Progression of EAO in rodents is associated with a significantly increased percentage of testicular endothelial cells and interstitial testicular blood vessels, indicating an ongoing angiogenic process.

View Article and Find Full Text PDF

Immunoregulation in the testis is characterized by a balance between immuno-suppression (or immune privilege) and the ability to react to infections and inflammation. In this review, we analyze the phenotypes of the various immune cell subtypes present in the testis, and how their functions change between homeostatic and inflammatory conditions. Starting with testicular macrophages, we explore how this heterogeneous population is shaped by the testicular microenvironment to ensure immune privilege.

View Article and Find Full Text PDF

Infection and inflammation of the male reproductive tract are relevant causes of infertility. Inflammatory damage occurs in the special immunosuppressive microenvironment of the testis, a hallmark termed testicular immune privilege, which allows tolerance to neo-antigens from developing germ cells appearing at puberty, long after the establishment of systemic immune tolerance. Experimental autoimmune orchitis (EAO) is a well-established rodent model of chronic testicular inflammation and organ specific autoimmunity that offers a valuable tool to investigate the pathological and molecular mechanisms leading to the breakdown of the testicular immune privilege.

View Article and Find Full Text PDF

The increasing worldwide prevalence of metabolic syndrome (MetS), especially in younger populations, is a risk factor for fertility disorders. However, a direct correlation of MetS with male infertility still remains unclear. In this work, we evaluated whether MetS has a negative impact on fertility of hybrid male mice with high reproductive performance.

View Article and Find Full Text PDF

Male meiotic germ cell including the spermatozoa represent a great challenge to the immune system, as they appear long after the establishment of normal immune tolerance mechanisms. The capacity of the testes to tolerate autoantigenic germ cells as well as survival of allogeneic organ engrafted in the testicular interstitium have led to consider the testis an immunologically privileged site. Disruption of this immune privilege following trauma, tumor, or autoimmune orchitis often results in male infertility.

View Article and Find Full Text PDF

The aim of this work was to study effects of ketotifen fumarate (KF) on prevention of tissue damage in testes of rats with experimental autoimmune orchitis (EAO) and on the contralateral testis in a model of prolonged testicular cord torsion (TCT). Rats with EAO or TCT were injected intraperitoneally once daily with KF or saline solution (vehicle group). Incidence and severity of testicular damage were evaluated by histopathology using an EAO score or a Johnsen score.

View Article and Find Full Text PDF

Antigen presenting cells (APCs) are a critical mediator between innate and adaptive immune response. APCs have diverse functions in physiological and pathological conditions, such as maintenance of tissue homoeostasis, prevention of autoimmunity and defence against pathogenic microorganisms and cancer cells. Dendritic cells (DCs) and macrophages (Mϕs) are "professional" APCs that internalise and process allo- and autoantigens; then, resulting peptides are exhibited together with major histocompatibility complex (MHC) molecules expressed at the cell surface.

View Article and Find Full Text PDF

Epididymal Cysteine Rich Secretory Proteins 1 and 4 (CRISP1 and CRISP4) associate with sperm during maturation and play different roles in fertilization. However, males lacking each of these molecules individually are fertile, suggesting compensatory mechanisms between these homologous proteins. Based on this, in the present work, we generated double CRISP1/CRISP4 knockout (DKO) mice and examined their reproductive phenotype.

View Article and Find Full Text PDF

Galectin-1 (Gal-1), a proto-type member of galectin family, is highly expressed in immune privileged sites, including the testis. However, in spite of considerable progress the relevance of endogenous and exogenous Gal-1 in testis pathophysiology have not yet been explored. Here we evaluated the in vivo roles of Gal-1 in experimental autoimmune orchitis (EAO), a well-established model of autoimmune testicular inflammation associated with subfertility and infertility.

View Article and Find Full Text PDF

Study Question: Does high mobility group box protein 1 (HMGB1) regulate inflammatory reactions in a rat model of experimental autoimmune orchitis (EAO)?

Summary Answer: HMGB1 appears to be involved in regulating inflammatory reactions in testes, as HMGB1 is translocated from testicular cells during the course of EAO and blocking its action by ethyl pyruvate (EP) reduces disease progression and spermatogenic damage.

What Is Known Already: Despite its immune privileged status, the human testis is prone to inflammatory lesions associated with male factor infertility. Accumulating evidence shows that HMGB1 plays an important role in onset and progression of autoimmune diseases.

View Article and Find Full Text PDF

Problem: The phenotype and function of regulatory T (Treg) cells in rats with experimental autoimmune orchitis (EAO) was evaluated.

Method Of Study: Distribution of Treg cells in draining lymph nodes from the testis (TLN) and from the site of immunization (ILN) was analysed by immunohistochemistry. The number, phenotype and proliferative response (5-bromo-2'-deoxyuridine incorporation) of Treg cells were evaluated by flow cytometry and Treg cell suppressive activity by in vitro experiments.

View Article and Find Full Text PDF

The purpose of this review is to describe how the immune cells present in the testis interact with the germinal epithelium contributing to survival or apoptosis of germ cells (GCs). Physiologically, the immunosuppressor testicular microenvironment protects GCs from immune attack, whereas in inflammatory conditions, tolerance is disrupted and immune cells and their mediators respond to GC self antigens, inducing damage of the germinal epithelium. Considering that experimental models of autoimmune orchitis have clarified the local immune mechanisms by which protection of the testis is compromised, we described the following topics in the testis of normal and orchitic rats: (1) cell adhesion molecule expression of seminiferous tubule specialized junctions and modulation of blood-testis barrier permeability by cytokines (2) phenotypic and functional characteristics of testicular dendritic cells, macrophages, effector and regulatory T cells and mast cells and (3) effects of pro-inflammatory cytokines (TNF-α, IL-6 and FasL) and the nitric oxide-nitric oxide synthase system on GC apoptosis.

View Article and Find Full Text PDF

Background: Male reproductive tract infection and inflammation are important aetiological factors of infertility. Experimental Autoimmune Orchitis (EAO) is a model of chronic inflammation useful to study mechanisms of inflammatory reactions leading to testicular impairment. EAO is characterised by interstitial cell infiltrate of lymphomonocytes, producers of pro-inflammatory cytokines involved in germ cell apoptosis.

View Article and Find Full Text PDF

The testis is considered an immunologically privileged site where germ cell antigens are protected from autoimmune attack. Yet in response to infections, inflammatory diseases, or trauma, there is an influx of leukocytes to testicular interstitium. Interactions between endothelial cells (EC) and circulating leukocytes are implicated in the initiation and evolution of inflammatory processes.

View Article and Find Full Text PDF

Aims: We previously reported that recombinant human Secretory Leukocyte Protease Inhibitor (SLPI) inhibits mitogen-induced proliferation of human peripheral blood mononuclear cells. To determine the relevance of this effect in vivo, we investigated the immuno-regulatory role of SLPI in an experimental autoimmune orchitis (EAO) model.

Main Methods: In order to increase SLPI half life, poly-ε-caprolactone microspheres containing SLPI were prepared and used for in vitro and in vivo experiments.

View Article and Find Full Text PDF

Experimental autoimmune orchitis (EAO) is a useful model to study chronic testicular inflammation and infertility. EAO is characterized by severe damage of seminiferous tubules with germ cells that undergo apoptosis and sloughing. We previously reported an increase in CD4+ and CD8+ effector T cells in the testes of rats with EAO.

View Article and Find Full Text PDF

Although the testis is an immunoprivileged organ, infection and inflammation may overwhelm immunosuppressor mechanisms inducing autoimmune reactions against spermatic antigens which result in aspermatogenesis and infertility. Autoimmune orchitis is a model of chronic inflammation useful for elucidating pathogenic mechanisms involved in testicular damage. We developed experimental autoimmune orchitis (EAO) in rats by active immunization with spermatic antigens and adjuvants characterized by interstitial inflammatory cell infiltrate, apoptosis and sloughing of germ cells.

View Article and Find Full Text PDF

The maturation state of dendritic cells (DC) is regarded as a control point for the induction of peripheral tolerance or autoimmunity. Experimental autoimmune orchitis (EAO) serves as a model to investigate inflammatory-based testicular impairment, which ranks as a significant cause of male infertility. This work aimed to determine whether DC enrichment occurs organotypically in testicular draining lymph nodes (TLN) compared with LN draining the site of immunization (ILN) and thus contributes to the pathogenesis of autoimmune orchitis.

View Article and Find Full Text PDF

Experimental autoimmune orchitis (EAO) is a useful model to study organ-specific autoimmunity and chronic testicular inflammation. EAO is characterized by an interstitial lymphomononuclear cell infiltration and damage of the seminiferous tubules showing germ cell sloughing and apoptosis. Using flow cytometry, we analysed the phenotype and number of T lymphocytes present in the testicular interstitium of rats during EAO development.

View Article and Find Full Text PDF

A wide spectrum of data in the literature shows the relevance of cytokines as paracrine regulators of spermatogenesis and steroidogenesis in the normal testis. In this brief review, we highlight the relevance of cytokines in the testis during inflammation. This phenomenon involves complex and multiple interactions among immune and germ cells generally resulting in the alteration of spermatogenesis.

View Article and Find Full Text PDF

Background: Experimental autoimmune orchitis (EAO) is a model of chronic inflammation and infertility useful for studying testicular immune and germ cell (GC) interactions. In this model, EAO was induced in rats by immunization with testicular homogenate and adjuvants; Control (C) rats were injected with adjuvants. EAO was characterized by an interstitial infiltrate of lymphomonocytes and seminiferous tubule damage, moderate 50 days (focal orchitis) and severe 80 days after the first immunization (severe orchitis).

View Article and Find Full Text PDF

Testicular inflammation with compromised fertility can occur despite the fact that the testis is considered an immunoprivileged organ. Testicular macrophages have been described as cells with an immunosuppressor profile, thus contributing to the immunoprivilege of the testis. Experimental autoimmune orchitis (EAO) is a model of organ-specific autoimmunity and testicular inflammation.

View Article and Find Full Text PDF

The presentation of self antigens by dendritic cells (DC) plays an important role in the initiation and maintenance of autoimmunity. In a model of experimental autoimmune orchitis (EAO), we have previously characterized dominant testicular autoantigens and shown an increase in DC numbers during the course of disease. In this study, we have developed a protocol for the isolation of a highly pure population of DC ( approximately 97%) from the testis of EAO and control rats to analyse the expression of major histocompatibility complex (MHC) class II and co-stimulatory molecules (CD80, CD86), chemokine receptors (CCR2, CCR7) and cytokines (IL-10, IL-12p70, TNF-alpha).

View Article and Find Full Text PDF

Background: Studies on experimental autoimmune orchitis (EAO) have helped to elucidate immunological mechanisms involved in testicular damage. We previously demonstrated that EAO is characterized by lymphomononuclear cell infiltrates and apoptosis of spermatocytes and spermatids expressing Fas and TNFR1. The aim of this work was to characterize the pathways involved in germ cell apoptosis in EAO and to determine the involvement of the Bcl-2 protein family in this process.

View Article and Find Full Text PDF