Publications by authors named "Guat-Siew Chew"

Coronary artery disease (CAD) is one of the leading causes of morbidity and mortality globally. In the last few years our understanding of the genetic and molecular mechanisms that promote CAD in individuals has increased with the advent of the genome era. This complex inflammatory disease has well-defined environmental risk factors.

View Article and Find Full Text PDF
Article Synopsis
  • The FGF1 gene, mainly found in the kidneys, has been linked to blood pressure (BP) regulation, but its precise biological mechanisms are still unclear.
  • A study involving over 14,000 individuals found a significant association between a specific gene variation (rs152524) and both systolic and diastolic BP, as well as with FGF1 mRNA levels in the kidneys.
  • Further analysis revealed that higher expression of FGF1 and its variants in the kidneys correlates with higher BP, along with interactions with partner genes that are also related to BP regulation.
View Article and Find Full Text PDF

In vitro and in vivo studies of the activity of Phaleria macrocarpa Boerl (Thymelaeaceae) leaves against the therapeutic target for hypercholesterolemia were done using the HDL receptor (SR-BI) and hypercholesterolemia-induced Sprague Dawley rats. The in vitro study showed that the active fraction (CF6) obtained from the ethyl acetate extract (EMD) and its component 2',6',4-trihydroxy-4'-methoxybenzophenone increased the SR-BI expression by 95% and 60%, respectively. The in vivo study has proven the effect of EMD at 0.

View Article and Find Full Text PDF

Dysfunctional zinc signaling is implicated in disease processes including cardiovascular disease, Alzheimer's disease and diabetes. Of the twenty-four mammalian zinc transporters, ZIP7 has been identified as an important mediator of the 'zinc wave' and in cellular signaling. Utilizing siRNA targeting Zip7 mRNA we have identified that Zip7 regulates glucose metabolism in skeletal muscle cells.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is the major activator of the acute phase response (APR). One important regulator of IL-6-activated APR is peroxisome proliferator-activated receptor alpha (PPARα). Currently, there is a growing interest in determining the role of PPARα in regulating APR; however, studies on the molecular mechanisms and signaling pathways implicated in mediating the effects of IL-6 on the expression of PPARα are limited.

View Article and Find Full Text PDF

Peroxisome proliferator activated receptor alpha has been implicated as a regulator of acute phase response genes in hepatocytes. Interleukin-6 is widely known as a major cytokine responsible in the regulation of acute phase proteins and, therefore, acute phase response. Unfortunately, to date, very little is understood about the molecular mechanisms by which interleukin-6 regulates the gene expression of peroxisome proliferator activated receptor alpha.

View Article and Find Full Text PDF