HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) play a crucial role in combination antiretroviral therapy (cART). To further enhance their antiviral activity and anti-resistance properties, we developed a series of novel NNRTIs, by specifically targeting tolerant region I of the NNRTI binding pocket. Among them, compound 9t-2 displayed excellent anti-HIV-1 potency against wild-type and prevalent mutant strains with EC values between 0.
View Article and Find Full Text PDFThe HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC = 0.
View Article and Find Full Text PDFSeasonal and pandemic influenza virus infections not only pose a serious threat to human health but also cause tremendous economic losses and social burdens. However, due to the inherent high variability of influenza virus RNA genomes, the existing anti-influenza virus drugs have been frequently faced with the clinical issue of emerging drug-resistant mutants. Therefore, there is an urgent need to develop efficient and broad-spectrum antiviral agents against wild-type and drug-resistant mutant strains.
View Article and Find Full Text PDFInfluenza is an acute respiratory infection caused by influenza viruses (IFV), According to the World Health Organization (WHO), seasonal IFV epidemics result in approximately 3-5 million cases of severe illness, leading to about half a million deaths worldwide, along with severe economic losses and social burdens. Unfortunately, frequent mutations in IFV lead to a certain lag in vaccine development as well as resistance to existing antiviral drugs. Therefore, it is of great importance to develop anti-IFV drugs with high efficiency against wild-type and resistant strains, needed in the fight against current and future outbreaks caused by different IFV strains.
View Article and Find Full Text PDFWe reported herein the design, synthesis and biological evaluation of a series of 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as HIV-1 reverse transcriptase (RT) ribonuclease H (RNase H) inhibitors using a privileged structure-guided scaffold refining strategy. In view of the similarities between the pharmacophore model of RNase H and integrase (IN) inhibitors as well as their catalytic sites, we also performed IN inhibition assays. Notably, the majority of these derivatives inhibited RNase H and IN at micromolar concentrations.
View Article and Find Full Text PDF