Publications by authors named "Guanyin Zhou"

For about a century, plant breeding has widely exploited the heterosis phenomenon-often considered as hybrid vigor-to increase agricultural productivity. The ensuing F hybrids can substantially outperform their progenitors due to heterozygous combinations that mitigate deleterious mutations occurring in each genome. However, only fragmented knowledge is available concerning the underlying genes and processes that foster heterosis.

View Article and Find Full Text PDF

An evaluation of combining ability can facilitate the selection of suitable parents and superior F hybrids for hybrid cotton breeding, although the molecular genetic basis of combining ability has not been fully characterized. In the present study, 282 female parents were crossed with four male parents in accordance with the North Carolina II mating scheme to generate 1128 hybrids. The parental lines were genotyped based on restriction site-associated DNA sequencing and 306 814 filtered single nucleotide polymorphisms were used for genome-wide association analysis involving the phenotypes, general combining ability (GCA) values, and specific combining ability values of eight fiber quality- and yield-related traits.

View Article and Find Full Text PDF

Background: Heterosis, a multigenic complex trait extrapolated as sum total of many phenotypic features, is widely utilized phenomenon in agricultural crops for about a century. It is mainly focused on establishing vigorous cultivars with the fact that its deployment in crops necessitates the perspective of genomic impressions on prior selection for metric traits. In spite of extensive investigations, the actual mysterious genetic basis of heterosis is yet to unravel.

View Article and Find Full Text PDF

Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding.

View Article and Find Full Text PDF