Aqueous Zn metal batteries are attracting tremendous interest as promising energy storage systems due to their intrinsic safety and cost-effectiveness. Nevertheless, the reversibility of Zn metal anodes (ZMAs) is hindered by water-induced parasitic reactions and dendrite growth. Herein, a novel hydrated eutectic electrolyte (HEE) consisting of Zn(BF)·xHO and sulfolane (SL) is developed to prevent the side reactions and achieve the outstanding cyclability of ZMAs.
View Article and Find Full Text PDFSodium metal batteries (SMBs) are considered as strong alternatives to lithium-ion batteries (LIBs), due to the inherent merits of sodium metal anodes (SMAs) including low redox potential (-2.71 V vs. SHE), high theoretical capacity (1166 mAh g), and abundant resources.
View Article and Find Full Text PDFAqueous Zn-metal batteries (AZMBs) have gained great interest due to their low cost, eco-friendliness, and inherent safety, which serve as a promising complement to the existing metal-based batteries, e.g., lithium-metal batteries and sodium-metal batteries.
View Article and Find Full Text PDFLithium-metal batteries (LMBs) are expected to serve as next-generation energy storage systems due to their high theoretical energy density. However, their practical application is largely impeded due to the safety risks that arise from the uncontrollable Li dendrite growth and the high reactivity between high flammability liquid organic electrolytes and metallic lithium. Here, we report a highly safe quasi-solid gel polymer electrolyte (GPE) to achieve stable cycling of lithium metal with high coulombic efficiency, and it is prepared by polymerization of 1,3-dioxolane (DOL) assisted by multi-functional HSbPO sheets.
View Article and Find Full Text PDFRecently, anion storage materials have gained significant attention owing to the widened cell voltage and additional anion storing capacity for a large energy density. MXenes are considered as the emerging anion storing materials owing to their sufficient interlayer spacing, rich surface chemistries, tunable structures, remarkable electrochemical properties, and mechanical integrity. Herein, a comprehensive review on the anion storage of MXenes covering their anion storage mechanism and state-of-the-art chemical strategies for the improved anion storage performances is reported.
View Article and Find Full Text PDFMetallic zinc (Zn) has been considered to be an ideal anode material for aqueous batteries, but is impeded by the growth of Zn dendrites and its side reactions with an aqueous electrolyte. Here, it is reported that an artificial protective layer filled with novel 2D Zn adsorbed Sb P O (denoted as Zn-Sb P O ) nanosheets provide an effective route to mitigate the above challenging problems. The Zn-Sb P O protection layer not only avoids the direct contact with the aqueous electrolyte to suppress the side reactions but also allows for Zn-ions to pass through the protection layer rapidly.
View Article and Find Full Text PDFLithium/sodium metal batteries have attracted enormous attention as promising candidates for high-energy storage devices. However, their practical applications are impeded by the growth of dendrites upon Li/Na plating. Here, we report that holey 2D N-doped TiNbO (N-TNO) nanosheets with high electroactive surface area and large amounts of lithiophilic/sodiophilic sites can effectively regulate Li/Na deposition as an interfacial layer, leading to an excellent cycling stability.
View Article and Find Full Text PDFSodium metal is regarded as one of the most prospective next-generation anodes material owing to its high theoretical capacity, low redox potential, low cost, and natural abundance. Its most notable problem is the dendrite growth during Na plating/striping, which causes not only the safety concern but also the generation of inactive Na. Here, it is demonstrated that 2D carbon nanosheets embedded by bismuth nanoparticles (NPs) (denoted as Bi⊂CNs) serve as a robust nucleation buffer layer to endow the sodium metal anodes (SMAs) with high Coulombic efficiencies (CEs) and dendrite-free deposition during long-term cycling.
View Article and Find Full Text PDFSodium (Na) metal is considered as a promising anode candidate for large-scale energy storage systems because of its high theoretical capacity and low electrochemical redox potential. However, Na anode suffers from a few challenges, such as the dendrite growth and severe parasitic reactions with electrolytes, which greatly hinder its practical applications. In this work, we demonstrate that an organosulfur compound additive (tetramethylthiuram disulfide) provides a facile and promising approach to overcome the above challenges in carbonate-based electrolytes.
View Article and Find Full Text PDFSodium metal anode (SMA) is one of the most favored choices for the next-generation rechargeable battery technologies owing to its low cost and natural abundance. However, the poor reversibility resulted from dendrite growth and formation of unstable solid electrolyte interphase has significantly hindered the practical application of SMAs. Herein, we report that a nucleation buffer layer comprising elaborately designed core-shell C@Sb nanoparticles (NPs) enables the homogeneous electrochemical deposition of sodium metal for long-term cycling.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2020
Sodium metal is an ideal anode material for metal rechargeable batteries, owing to its high theoretical capacity (1166 mAh g ), low cost, and earth-abundance. However, the dendritic growth upon Na plating, stemming from unstable solid electrolyte interphase (SEI) film, is a major and most notable problem. Here, a sodium benzenedithiolate (PhS Na )-rich protection layer is synthesized in situ on sodium by a facile method that effectively prevents dendrite growth in the carbonate electrolyte, leading to stabilized sodium metal electrodeposition for 400 cycles (800 h) of repeated plating/stripping at a current density of 1 mA cm .
View Article and Find Full Text PDFMetal polyphosphides are regarded as the ideal anode candidates for sodium storage because of their high theoretical capacity, reasonable potential, and abundant resource alternative. However, most of them suffer from irreversibility problems, as reflected by their low reversible capacity, inferior Coulombic efficiency (CE), low rate capability, and poor cycling stability. In this work, we systematically compare the electrochemical behavior of a variety of polyphosphides bulks, discovering that the CuP bulks have higher initial reversible capacity (416 mAh g at 0.
View Article and Find Full Text PDFThe urgent demand of high energy density and high power density devices has triggered significant interest in high dielectric constant (high-k) flexible nanocomposites comprising dielectric polymer and high-k inorganic nanofiller. However, the large electrical mismatch between polymer and nanofiller usually leads to earlier electric failure of the nanocomposites, resulting in an undesirable decrease of electrical energy storage capability. A few studies show that the introduction of moderate-k shell onto a high-k nanofiller surface can decrease the dielectric constant mismatch, and thus, the corresponding nanocomposites can withstand high electric field.
View Article and Find Full Text PDFDielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO nanowires (NWs) encapsulated by TiO shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites.
View Article and Find Full Text PDFHigh-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital.
View Article and Find Full Text PDFRapid evolution of energy storage devices expedites the development of high-energy-density materials with excellent flexibility and easy processing. The search for such materials has triggered the development of high-dielectric-constant (high-k) polymer nanocomposites. However, the enhancement of k usually suffers from sharp reduction of breakdown strength, which is detrimental to substantial increase of energy storage capability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2015
High dielectric constant (k) polymer nanocomposites have shown great potential in dielectric and energy storage applications in the past few decades. The introduction of high-k nanomaterials into ferroelectric polymers has proven to be a promising strategy for the fabrication of high-k nanocomposites. One-dimensional large-aspect-ratio nanowires exhibit superiority in enhancing k values and energy density of polymer nanocomposites in comparison to their spherical counterparts.
View Article and Find Full Text PDFThis work investigated the interactions of α-Fe2O3 nanoparticles (NPs) with different structural nucleic acids and their fluorescence quenching ability towards fluorophore-labelled nucleic acid probes. Different from bulk α-Fe2O3 samples, nanoscale α-Fe2O3 particles exhibit the unique properties of strong adsorption and fluorescence quenching to fluorophore-labelled single-stranded DNA (ssDNA) probes. Based on these findings, a facile fluorescence method was developed for versatile quantification of nucleic acids.
View Article and Find Full Text PDFChem Commun (Camb)
October 2014
A new coordination polymer which shows an unusual 2D inorganic connectivity was constructed. This compound exhibits distinct fluorescence quenching ability to the dye-labeled single-stranded DNA probes with different lengths, based on which an analytical method was developed for the activity assay of deoxyribonuclease I.
View Article and Find Full Text PDFAs a two-dimensional (2D) ordered porous organic framework (POF), PAF-6 is demonstrated to have an extraordinarily high fluorescence quenching ability to dye-labeled single-stranded DNA (ssDNA). Based on its different affinities to ssDNA and double-stranded DNA (dsDNA), and to ssDNAs with different lengths, PAF-6 is firstly utilized as a simple, cost-efficient, sensitive and selective sensing platform for sequence-specific detection of DNA and activity analysis of exonuclease I (Exo I). In these two systems, the sensing approach is accomplished by simply mixing the dye-labeled ssDNA probe with the targets and PAF-6.
View Article and Find Full Text PDFDalton Trans
September 2013
A luminescent two-dimensional (2D) coordination polymer is demonstrated to be a selective sensing material for the straightforward detection of nitrobenzene via a redox fluorescence quenching mechanism.
View Article and Find Full Text PDF