Publications by authors named "Guanqi Chen"

Motivation: Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged.

View Article and Find Full Text PDF

Ultrasound segmentation of thyroid nodules is a challenging task, which plays an vital role in the diagnosis of thyroid cancer. However, the following two factors limit the development of automatic thyroid nodule segmentation algorithms: (1) existing automatic nodule segmentation algorithms that directly apply semantic segmentation techniques can easily mistake non-thyroid areas as nodules, because of the lack of the thyroid gland region perception, the large number of similar areas in the ultrasonic images, and the inherently low contrast images; (2) the currently available dataset (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • * This research analyzed data from 530 patients to create a necroptosis-related score (N-Score) to better evaluate ccRCC outcomes, which was confirmed by an external group of 116 patients.
  • * Findings indicate that higher N-Scores are linked to worse patient outcomes, tumor mutational burden, drug sensitivity, and immune activity, suggesting N-Scores as an important biomarker for improving prognosis and therapy in ccRCC.
View Article and Find Full Text PDF

Medical visual question answering (VQA) aims to correctly answer a clinical question related to a given medical image. Nevertheless, owing to the expensive manual annotations of medical data, the lack of labeled data limits the development of medical VQA. In this paper, we propose a simple yet effective data augmentation method, VQAMix, to mitigate the data limitation problem.

View Article and Find Full Text PDF

Background: This study is aimed at evaluating the diagnostic efficacy of ultrasound-based risk stratification for thyroid nodules in the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) and the American Thyroid Association (ATA) risk stratification systems.

Methods: 286 patients with thyroid cancer were included in the tumor group, with 259 nontumor cases included in the nontumor group. The ACR TI-RADS and ATA risk stratification systems assessed all thyroid nodules for malignant risks.

View Article and Find Full Text PDF

Recently, deep convolutional neural networks have achieved significant success in salient object detection. However, existing state-of-the-art methods require high-end GPUs to achieve real-time performance, which makes it hard to adapt to low cost or portable devices. Although generic network architectures have been proposed to speed up inference on mobile devices, they are tailored to the task of image classification or semantic segmentation, and struggle to capture intrachannel and interchannel correlations that are essential for contrast modeling in salient object detection.

View Article and Find Full Text PDF