Graphene-based flexible yarn sensors are promising due to their exceptional conductivity and user-friendly properties, but ensuring stable graphene adsorption on fibers for long-term durability remains challenging. Herein, we produce a flexible polydopamine (PDA)-modified cotton yarn via a simple dip-coating process using a self-made sodium deoxycholate (SDC)-modified graphene dispersion, avoiding non-biodegradable, corrosion-prone metallic coatings. The resulting sensor exhibits low electrical resistance (as low as 21.
View Article and Find Full Text PDFInteractive clothing requires sensing and display functionalities to be embedded on textiles. Despite the significant progress of electronic textiles, the integration of optoelectronic materials on fabrics remains as an outstanding challenge. In this Letter, using the electro-optical tunability of graphene, we report adaptive optical textiles with electrically controlled reflectivity and emissivity covering the infrared and near-infrared wavelengths.
View Article and Find Full Text PDF