Somatic mutation phasing informs our understanding of cancer-related events, like driver mutations. We generated linked-read whole genome sequencing data for 23 samples across disease stages from 14 multiple myeloma (MM) patients and systematically assigned somatic mutations to haplotypes using linked-reads. Here, we report the reconstructed cancer haplotypes and phase blocks from several MM samples and show how phase block length can be extended by integrating samples from the same individual.
View Article and Find Full Text PDFGene regulatory networks (GRNs) are key determinants of cell function and identity and are dynamically rewired during development and disease. Despite decades of advancement, challenges remain in GRN inference, including dynamic rewiring, causal inference, feedback loop modeling and context specificity. To address these challenges, we develop Dictys, a dynamic GRN inference and analysis method that leverages multiomic single-cell assays of chromatin accessibility and gene expression, context-specific transcription factor footprinting, stochastic process network and efficient probabilistic modeling of single-cell RNA-sequencing read counts.
View Article and Find Full Text PDFPac Symp Biocomput
April 2021
Concurrently available genomic and transcriptomic data from large cohorts provide opportunities to discover expression quantitative trait loci (eQTLs)-genetic variants associated with gene expression changes. However, the statistical power of detecting rare variant eQTLs is often limited and most existing eQTL tools are not compatible with sequence variant file formats. We have developed AeQTL (Aggregated eQTL), a software tool that performs eQTL analysis on variants aggregated according to user-specified regions and is designed to accommodate standard genomic files.
View Article and Find Full Text PDFCorrection to this paper has been published: https://doi.org/10.1038/s41467-020-20128-w.
View Article and Find Full Text PDFSummary: Large-scale sequencing projects, such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), have generated high throughput sequencing and molecular profiling data sets, but it is still challenging to identify potentially causal changes in cellular processes in cancer as well as in other diseases in an automated fashion. We developed the netboxr package written in the R programming language, which makes use of the NetBox algorithm to identify candidate cancer-related functional modules. The algorithm makes use of a data-driven, network-based approach that combines prior knowledge with a network clustering algorithm, obviating the need for and the limitation of independently curated functionally labeled gene sets.
View Article and Find Full Text PDFThe Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations.
View Article and Find Full Text PDFDetermining protein levels in each tissue and how they compare with RNA levels is important for understanding human biology and disease as well as regulatory processes that control protein levels. We quantified the relative protein levels from over 12,000 genes across 32 normal human tissues. Tissue-specific or tissue-enriched proteins were identified and compared to transcriptome data.
View Article and Find Full Text PDFAnammox is an environmental-friendly and cost-effective technology for nitrogen removal. This study provides the nitrogen removal profiles, physiological traits of anammox bacteria culture under the substrate deficiency conditions at the optimal cultivation temperature 35°C. The determined period of starvation tolerance was 4 weeks in the absence of nitrite, 5 weeks in the absence of ammonium, as well as 7 weeks for the absence of these two substrates at 36°C, pH 7-8 and anaerobic conditions.
View Article and Find Full Text PDF