Ion channels in retinal pigment epithelial (RPE) cells are crucial for retinal health and vision functions. Defects in such channels are intricately associated with the development of various retinopathies that cause blindness. Human pluripotent stem cells (hPSC)-derived RPE cells, including those from human-induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC), have been used as in vitro models for investigating pathogenic mechanisms and screening potential therapeutic strategies for retinopathies.
View Article and Find Full Text PDFCLCN2 encodes a two-pore homodimeric chloride channel protein (CLC-2) that is widely expressed in human tissues. The association between Clcn2 and the retina is well-established in mice, as loss-of-function of CLC-2 can cause retinopathy in mice; however, the ocular phenotypes caused by CLCN2 mutations in humans and the underlying mechanisms remain unclear. The present study aimed to define the ocular features and reveal the pathogenic mechanisms of CLCN2 variants associated with retinal degeneration in humans using an in vitro overexpression system, as well as patient-induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cells and retinal organoids (ROs).
View Article and Find Full Text PDFHuman pluripotent stem cell-derived retinal pigment epithelium (iRPE) is an attractive cell source for disease modeling and cell replacement therapy of retinal disorders with RPE defects. However, there are still challenges to develop appropriate culture conditions close to in vivo microenvironment to generate iRPE sheets, which mimic more faithfully the characteristics and functions of the human RPE cells. Here, we developed a simple, novel platform to construct authentic iRPE sheets using human amniotic membrane (hAM) as a natural scaffold.
View Article and Find Full Text PDFMüller glial cells (MGCs) play important roles in human retina during physiological and pathological conditions. However, the development process of human MGCs remains unclear, and how to obtain large numbers of human MGCs with high quality faces technical challenges, which hinder the further study and application of MGCs. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) with all retinal cell subtypes provide an unlimited cell resource and a platform for the studies of retinal development and disorders.
View Article and Find Full Text PDFStem cell-based cell therapies are considered to be promising treatments for retinal disorders with dysfunction or death of photoreceptors. However, the enrichment of human photoreceptors suitable for transplantation has been highly challenging so far. This study aimed to generate a photoreceptor-specific reporter human induced pluripotent stem cell (hiPSC) line using CRISPR/Cas9 genome editing, which harbored an enhanced green fluorescent protein () sequence at the endogenous locus of the pan photoreceptor marker recoverin () After confirmation of successful targeting and gene stability, three-dimensional retinal organoids were induced from this reporter line.
View Article and Find Full Text PDFBackground: Retinal degenerative disorders (RDs) are the main cause of blindness without curable treatment. Our previous studies have demonstrated that human-induced pluripotent stem cells can differentiate into retinal organoids with all subtypes of retina, which provides huge promise for treating these diseases. Before these methods can be realized, RD animal models are required to evaluate the safety and efficacy of stem cell therapy and to develop the surgical tools and procedures for cell transplantation in patients.
View Article and Find Full Text PDFRPE65-associated Leber congenital amaurosis (LCA) is one of highly heterogeneous, early onset, severe retinal dystrophies with at least 130 gene mutation sites identified. Their pathogenicity has not been directly clarified due to lack of diseased cells. Here, we generated human-induced pluripotent stem cells (hiPSCs) from one putative LCA patient carrying two novel mutations with c.
View Article and Find Full Text PDFPurpose: Retinal pigment epithelium (RPE) and neural retina could be generated concurrently through retinal organoid induction approaches using human induced pluripotent stem cells (hiPSCs), providing valuable sources for cell therapy of retinal degenerations. This study aims to enrich and expand hiPSC-RPE acquired with this platform and explore characteristics of serially passaged RPE cells.
Methods: RPE has been differentiated from hiPSCs with a published retinal organoid induction method.
Urine cells, a body trash, have been successfully reprogrammed into human induced pluripotent stem cells (U-hiPSCs) which hold a huge promise in regenerative medicine. However, it is unknown whether or to what extent U-hiPSCs can generate retinal cells so far. With a modified retinal differentiation protocol without addition of retinoic acid (RA), our study revealed that U-hiPSCs were able to differentiate towards retinal fates and form 3D retinal organoids containing laminated neural retina with all retinal cell types located in proper layer as in vivo.
View Article and Find Full Text PDF