Publications by authors named "Guanhua Yang"

Article Synopsis
  • The study aimed to evaluate tumor progression in hepatocellular carcinoma (HCC) patients without major blood vessel invasion who received conventional transarterial chemoembolization (cTACE), focusing on microvascular invasion (MVI) risk over a 2-year period.
  • Researchers developed a predictive model for MVI using data from patients treated with liver resection and then applied this model to those who received cTACE, comparing tumor progression rates between high- and low-risk groups.
  • Results showed the MVI model was highly accurate, and patients identified as high-risk had a lower likelihood of complete response after treatment and a significantly higher risk of tumor progression within 2 years.
View Article and Find Full Text PDF

SnS-based carbon composites have garnered considerable concentration as prospective anode materials (AMs) for lithium-ion batteries (LIBs). Nevertheless, most SnS-based carbon composites underwent a two-phase or multistep preparation process and exhibited unsatisfactory LIB performance. In this investigation, we introduce a straightforward and efficient one-step arc-discharge technique for the production of dual-layer carbon-coated tin sulfide nanoparticles (SnS@C).

View Article and Find Full Text PDF

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo.

View Article and Find Full Text PDF

Origin of nonlinear transport phenomena in conducting polymers has long been a topic of intense controversies. Most previous knowledge has attributed the macroscopic nonlinear I-V characteristics to individual behaviors of elementary resistors in the network. In this Letter, we show via a systematic dimensionality-dependent transport investigation, that understanding the nonlinear transport in conducting polymers must include the collective transport effect in a percolation network.

View Article and Find Full Text PDF

Layered graphene and molybdenum disulfide have outstanding sodium ion storage properties that make them suitable for sodium-ion batteries (SIBs). However, the easy and large-scale preparation of graphene and molybdenum disulfide composites with structural stability and excellent performance face enormous challenges. In this study, a self-supporting network-structured MoS/heteroatom-doped graphene (MoS/NSGs-G) composite is prepared by a simple and exercisable electrochemical exfoliation followed by a hydrothermal route.

View Article and Find Full Text PDF

The c-axis aligned crystalline indium-gallium-zinc-oxide field-effect transistor (CAAC-IGZO FET), exhibiting an extremely low off-state leakage current (~10 A/μm), has promised to be an ideal candidate for Dynamic Random Access Memory (DRAM) applications. However, the instabilities leaded by the drift of the threshold voltage in various stress seriously affect the device application. To better develop high performance CAAC-IGZO FET for DRAM applications, it's essential to uncover the deep physical process of charge transport mechanism in CAAC-IGZO FET.

View Article and Find Full Text PDF

As a potential anode material for lithium-ion batteries (LIBs), metal tin shows a high specific capacity. However, its inherent "volume effect" may easily turn tin-based electrode materials into powder and make them fall off in the cycle process, eventually leading to the reduction of the specific capacity, rate and cycle performance of the batteries. Considering the "volume effect" of tin, this study proposes to construct a carbon coating and three-dimensional graphene network to obtain a "double confinement" of metal tin, so as to improve the cycle and rate performance of the composite.

View Article and Find Full Text PDF

The stability and wide temperature performance range of solid electrolytes are the keys to the development of high-energy density all-solid-state lithium-ion batteries. In this work, a PVDF-HFP-LiClO-LiLaZrTaO (LLZTO) composite solid electrolyte was prepared using the solution pouring method. The PVDF-HFP-LiClO-LLZTO composite solid electrolyte shows excellent electrochemical performance in the temperature range of 30 to 60 °C.

View Article and Find Full Text PDF

With high safety and good flexibility, polymer-based composite solid electrolytes are considered to be promising electrolytes and are widely investigated in solid lithium batteries. However, the low conductivity and high interfacial impedance of polymer-based solid electrolytes hinder their industrial applications. Herein, a composite solid-state electrolyte containing graphene (PVDF-LATP-LiClO4-Graphene) with structurally stable and good electrochemical performance is explored and enables excellent electrochemical properties for lithium-ion batteries.

View Article and Find Full Text PDF

An inter-layer dielectric (ILD) deposition process to simultaneously form the conductive regions of self-aligned (SA) coplanar In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) is demonstrated. N-IGZO regions and excellent ohmic contact can be obtained without additional steps by using a magnetron sputtering process to deposit a SiO ILD. The fabricated IGZO TFTs show a subthreshold swing (SS) of 94.

View Article and Find Full Text PDF

This article discusses the impact of corporate managers' green environmental awareness and strategic intelligence on the formulation of corporate green product innovation strategies and their relationship with marketing performance. As the pre-factors affecting innovation, the green environmental awareness and strategic intelligence will affect the formulation and implementation of corporate green product innovation strategies, thereby promoting corporate performance. According to the regression analysis of 367 questionnaires from heavily polluting enterprises, it can be seen that managers' green environmental awareness is positively correlated with green product technological innovation and design innovation strategies.

View Article and Find Full Text PDF

Organic conjugated polymers demonstrate great potential in transistors, solar cells and light-emitting diodes, whose performances are fundamentally governed by charge transport. However, the morphology-property relationships and the underpinning charge transport mechanisms remain unclear. Particularly, whether the nonlinear charge transport in conducting polymers is appropriately formulated within non-Fermi liquids is not clear.

View Article and Find Full Text PDF

Drawing inspiration from biology, neuromorphic systems are of great interest in direct interaction and efficient processing of analogue signals in the real world and could be promising for the development of smart sensors. Here, we demonstrate an artificial sensory neuron consisting of an InGaZnO (IGZO)-based optical sensor and NbO-based oscillation neuron in series, which can simultaneously sense the optical information even beyond the visible light region and encode them into electrical impulses. Such artificial vision sensory neurons can convey visual information in a parallel manner analogous to biological vision systems, and the output spikes can be effectively processed by a pulse coupled neural network, demonstrating the capability of image segmentation out of a complex background.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Two-dimensional materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality two-dimensional materials, but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental two-dimensional crystals, metal-dichalcogenides, magnets and superconductors.

View Article and Find Full Text PDF

In atomically-thin two-dimensional (2D) semiconductors, the nonuniformity in current flow due to its edge states may alter and even dictate the charge transport properties of the entire device. However, the influence of the edge states on electrical transport in 2D materials has not been sufficiently explored to date. Here, we systematically quantify the edge state contribution to electrical transport in monolayer MoS/WSe field-effect transistors, revealing that the charge transport at low temperature is dominated by the edge conduction with the nonlinear behavior.

View Article and Find Full Text PDF

Bacterial pathogens are thought to activate expression of virulence genes upon detection of host-associated cues, but identification of the nature of such signals has proved difficult. We generated a genome-scale defined transposon mutant library in Edwardsiella piscicida, an important fish pathogen, to quantify the fitness of insertion mutants for intracellular growth in macrophages and in turbot (Scophthalmus maximus). These screens identified EvrA, a transcription activator that induces expression of esrB, a key virulence regulator.

View Article and Find Full Text PDF

Edwardsiella piscicida is the aetiological agent of fish edwardsiellosis, causing huge economic losses in aquaculture industries. The use of a live attenuated vaccine (LAV) will be an effective strategy to control the disease in farmed fish. Thus, methods facilitating exploration of targets used for construction of an LAV will be of great significance.

View Article and Find Full Text PDF

Marine pathogens are transmitted from one host to another through seawater. Therefore, it is important for marine pathogens to maintain survival or growth in seawater. However, little is known about how marine pathogens adapt to living in seawater environments.

View Article and Find Full Text PDF

The invasion of Chlamydia trachomatis, an obligate intracellular bacterium, into epithelial cells is driven by a complex interplay of host and bacterial factors. To comprehensively define the host genes required for pathogen invasion, we undertook a fluorescence-activated cell sorting (FACS)-based CRISPR screen in human cells. A genome-wide loss-of-function library was infected with fluorescent C.

View Article and Find Full Text PDF

Vibrio anguillarum is a notorious bacterial pathogen that causes vibriosis in various marine farmed fish species. The highly pathogenic V. anguillarum strain MVM425 has been isolated from moribund turbot in the China Yellow Sea, but the genetic basis for its pathogenesis is undefined.

View Article and Find Full Text PDF

The application of low-fragmentation mass spectrometry to identify chemicals has been recognized to be of particular importance in chemistry, biomedicine, and materials science. Utilizing a customized all-solid-state picosecond-pulsed deep-ultraviolet (DUV) laser, here we present new advances into photoionization mass spectrometry. The DUV laser ionization mass spectrometry (DUV-LIMS) results in very clean spectra pertaining to minimized structure relaxation and fragmentation under the ultrafast ionization process.

View Article and Find Full Text PDF

A Sn-Ni/graphite sheet composite is synthesized by a simple electroless plating method as an anode material for lithium ion batteries (LIBs). The microstructure and electrochemical properties of the composite are characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), and AC impedance spectroscopy. The results show that the as-prepared composite has Sn-Ni nanoparticles around 100 nm in size, where metallic Ni acts as an "anchor" to fix metallic Sn.

View Article and Find Full Text PDF

Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g.

View Article and Find Full Text PDF