Background: Transmission of COVID-19 is now normalized. There is an association between it and increased incidence of febrile seizures in children. Exploring whether COVID-19 has a specific effect on the clinical and biochemical features of febrile seizures is critical for the development of clinical treatment and prevention strategies.
View Article and Find Full Text PDFBackground: Exchange transfusion therapy is a complex and invasive procedure with a high risk coefficient. This method involves replacing the entire blood of a child with fresh blood with double circulating blood volume in a short period, typically in 1-2 h. This procedure can cause the body's internal environment to be unstable, which can put newborns under a lot of stress.
View Article and Find Full Text PDFTwo-dimensional (2D) amorphous nanosheets with ultrathin thicknesses have properties that differ from their crystalline counterparts. However, conventional methods for growing 2D materials often produce either crystalline flakes or amorphous nanosheets with an uncontrollable thickness. Here, we report that ultrathin amorphous metal-oxide nanosheets featuring superior flatness can be realized through the molecularly confined topochemical transformation of MXene.
View Article and Find Full Text PDFAim: To explore the psychological experience and coping methods of nurses exposed to workplace violence and to propose measures to prevent and control workplace violence and provide psychological assistance for health workers.
Design: We adopted a phenomenological qualitative design. Twelve nurses in intensive care units assisting in Wuhan who experienced workplace violence during the COVID-19 outbreak were selected using purposeful sampling.
The mechanisms underlying tissue-specific replication of enteroviruses are currently unclear. Although enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are both common pathogens that cause hand-foot-mouth disease, they display quite different neurotropic properties. Herein, we characterized the role of the internal ribosome entry site (IRES) in determining neurovirulence using an oral inoculation model of EV-A71.
View Article and Find Full Text PDFWe aimed to review the existing literature on the different types of neutralization assays and international standards for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We comprehensively summarized the serological assays for detecting neutralizing antibodies against SARS-CoV-2 and demonstrated the importance of an international standard for calibrating the measurement of neutralizing antibodies. Following the coronavirus disease outbreak in December 2019, there was an urgent demand to detect neutralizing antibodies in patients or vaccinated people to monitor disease outcomes and determine vaccine efficacy.
View Article and Find Full Text PDFThe ordered coassembly of mixed-dimensional species-such as zero-dimensional (0D) nanocrystals and 2D microscale nanosheets-is commonly deemed impracticable, as phase separation almost invariably occurs. Here, by manipulating the ligand grafting density, we achieve ordered coassembly of 0D nanocrystals and 2D nanosheets under standard solvent evaporation conditions, resulting in macroscopic, freestanding hybrid-dimensional superlattices with both out-of-plane and in-plane order. The key to suppressing the notorious phase separation lies in hydrophobizing nanosheets with molecular ligands identical to those of nanocrystals but having substantially lower grafting density.
View Article and Find Full Text PDFThe NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in retinoic acid-inducible gene I (RIG-I) translocation to mitochondrial antiviral-signaling protein (MAVS) to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response.
View Article and Find Full Text PDFLayered mesostructured graphene, which combines the intrinsic advantages of planar graphene and mesoporous materials, has become interestingly important for energy storage and conversion applications. Here, an interlayer-confined molecular assembly method is presented for constructing all-graphitic multilaminate membranes (MMG⊂rGO), which are composed of monolayer mesoporous graphene (MMG) sandwiched between reduced graphene oxide (rGO) sheets. Hybrid assembly of iron-oleate complexes and organically modified GO sheets enables the preferential assembly of iron-oleate precursors at the interlayer space of densely stacked GO, driven by the like-pair molecular van der Waals interactions.
View Article and Find Full Text PDFInspired by the self-assembly of nanoparticle superlattices, we report a general method that exploits long-chain molecular ligands to induce ordered assembly of colloidal nanosheets (NSs), resulting in 2D laminate superlattices with high packing density. Co-assembly of two types of NSs further enables 2D/2D heterostructured superlattices. As a proof of concept, co-assembly of Ti C T and graphene oxide (GO) NSs followed by thermal annealing leads to MXene-rGO superlattices with tunable microstructures, which exhibit significantly higher capacitance than their filtrated counterparts, delivering an ultrahigh volumetric capacitance of 1443 F cm at 2 mV s .
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2020
Silicon (Si) has attracted much attention as anode materials for next-generation lithium-ion batteries (LIBs) due to its high theoretical capacity. To improve the electrical conductivity, it is critically important to realize the uniform distribution of Si nanoparticles (NPs) onto conductive substrates such as graphene and MXene. Herein, a simple and effective strategy through facile electrostatic assembly was reported, in which Si NPs can adhere onto few-layer MXene (TiC) nanosheets uniformly to afford Si@MXene superstructures.
View Article and Find Full Text PDFThe increasing severity of water pollution has strongly urged to develop green and efficient adsorbents for waste-water treatment. In this work, ZnAl layered double oxide nanosheets uniformly coated with ultra-thin amorphous carbon shells (ZnAl-LDO@C) were fabricated by modifying ZnAl layered double hydroxides (LDHs) with molecular ligands followed by calcination. Compared with their counterparts derived from the pristine ZnAl-LDH, ZnAl-LDO@C nanosheets exhibit higher specific surface area with abundant and highly accessible active sites.
View Article and Find Full Text PDFDirected co-assembly of binary nanoparticles (NPs) into one-dimensional copolymer-like chains is fascinating but challenging in the realm of material science. While many strategies have been developed to induce the polymerization of NPs, it remains a grand challenge to produce colloidal copolymers with widely tailored compositions and precisely controlled architectures. Herein we report a robust colloidal polymerization strategy, which enables the growth of sophisticated NP chains with elaborately designed structures.
View Article and Find Full Text PDFSwine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine.
View Article and Find Full Text PDFDiscretely sized semiconductor clusters have attracted considerable attention due to their intriguing optical properties and self-assembly behaviors. While lead halide perovskite nanostructures have been recently intensively explored, few studies have addressed perovskite clusters and their self-assembled superstructures. Here, we report the room-temperature synthesis of sub-2 nm CsPbBr clusters and present strong evidence that these ultrasmall perovskite species, obtained under a wide range of reaction conditions, possess a specific size, with optical properties and self-assembly characteristics resembling those of well-known II-VI semiconductor magic-sized clusters.
View Article and Find Full Text PDFPrevention and treatment measures against influenza virus infection remain limited, and alternative host protection strategies are badly needed. In this review, we discuss the regulatory role of intestinal microbiota in influenza infections, and present the latest evidence for strategies seeking to harness gut microbiota for the management of influenza infections.
View Article and Find Full Text PDF