Introduction: The juvenile hormone (JH) and 20-hydroxyecdysone (20E) are the central regulating hormones of insect development. The timing of their secretion usually leads to developmental transitions.
Methods: The developmental transitions were evaluated via the starvation treatment and the expressions of two key metamorphosis inducing factor in .
Background: Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear.
Results: Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages.
J Agric Food Chem
September 2024
Azadirachtin is a widely used botanical pesticide for agricultural pest control worldwide. However, the molecular mechanisms of azadirachtin in insects are not fully understood. In this study, histological analysis and RNA sequencing were conducted to investigate the impact of azadirachtin on the larval development of .
View Article and Find Full Text PDFPestic Biochem Physiol
March 2024
Lepidopteran insects are refractory to RNA interference (RNAi) response, especially to orally delivered double-stranded RNA (dsRNA). High nuclease activity in the midgut lumen is proposed as one of the major reasons for RNAi insensitivity. We identified three dsRNase genes highly expressed in the midgut of fall armyworm (FAW), Spodoptera frugiperda.
View Article and Find Full Text PDFAzadirachtin has been used to control agricultural pests for a long time; however, the molecular mechanism of azadirachtin on lepidopterans is still not clear. In this study, the fourth instar larvae of fall armyworm were fed with azadirachtin, and then the ecdysis was blocked in the fourth instar larval stage (L4). The prothoracic glands (PGs) of the treated larvae were dissected for RNA sequencing to determine the effect of azadirachtin on ecdysis inhibition.
View Article and Find Full Text PDFMethoprene, a juvenile hormone (JH) analog, is widely used for insect control, but its mode of action is not known. To study methoprene action in the yellow fever mosquito, , the (ecdysone-induced transcription factor) was knocked out using the CRISPR-Cas9 system. The E93 mutant pupae retained larval tissues similar to methoprene-treated insects.
View Article and Find Full Text PDFIn insects, the shedding of the old exoskeleton is accomplished through ecdysis which is typically followed by the expansion and tanning of the new cuticle. Four neuropeptides, eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon (Bur) are known to control ecdysis. However, the regulation of these neuropeptide genes is still poorly understood.
View Article and Find Full Text PDFEfficiency is the basis for the application of RNA interference (RNAi) technology. Actually, RNAi efficiency varies greatly among insect species, tissues and genes. Previous efforts have revealed the mechanisms for variation among insect species and tissues.
View Article and Find Full Text PDFDouble-stranded RNA (dsRNA), the unique trigger of RNA interference, could be used as potential pesticides for the management of storage insects. High species specificity greatly improves the biosafety of dsRNAs. However, there are usually more than one insect species in real circumstances.
View Article and Find Full Text PDFCRISPR-Cas9 mediated genome editing methods are being used for the analysis of gene function. However, it is hard to identify gene knockout mutants for genes whose knockout does not cause distinct phenotypes. To overcome this issue in the disease vector, , a transgenic Cas9/single guide RNA (sgRNA) method, was used to knock out the eye marker gene, (), and the juvenile hormone receptor, ().
View Article and Find Full Text PDFRNAi is a potent technique for the knockdown of target genes. However, its potential off-target effects limit the widespread applications in both reverse genetic analysis and genetic manipulation. Previous efforts have uncovered rules underlying specificity of siRNA-based silencing, which has broad applications in humans, but the basis for specificity of dsRNAs, which are better suited for use as insecticides, is poorly understood.
View Article and Find Full Text PDFRNA interference (RNAi) efficiency dramatically varies among different insects and among administration methods. Numerous studies have revealed that a poor RNAi response is usually associated with a high double-stranded RNA (dsRNA)-degrading activity. Using the red flour beetle Tribolium castaneum, we conducted genome-wide identification of genes encoding dsRNA-degrading nucleases of the DNA/RNA non-specific endonuclease superfamily.
View Article and Find Full Text PDFInsect courtship and mating depend on integration of olfactory, visual, and tactile cues. Compared to other insects, Bombyx mori, the domesticated silkworm, has relatively simple sexual behaviors as it cannot fly. Here by using CRISPR/Cas9 and electrophysiological techniques we found that courtship and mating behaviors are regulated in male silk moths by mutating genes in the sex determination cascade belonging to two conserved pathways.
View Article and Find Full Text PDFThe CRISPR/Cas9 system is an efficient genome editing method that can be used in functional genomics research. The fall armyworm, Spodoptera frugiperda, is a serious agricultural pest that has spread over most of the world. However, very little information is available on functional genomics for this insect.
View Article and Find Full Text PDFRNA interference (RNAi) efficiency varies among insects. RNAi is highly efficient and systemic in coleopteran insects but quite variable and inefficient in lepidopteran insects. Degradation of double-stranded RNA (dsRNA) by double-stranded ribonucleases (dsRNases) is thought to contribute to the variability in RNAi efficiency observed among insects.
View Article and Find Full Text PDFThe yellow fever mosquito, , vectors human pathogens. Juvenile hormones (JH) control almost every aspect of an insect's life, and JH analogs are currently used to control mosquito larvae. Since RNA interference does not work efficiently during the larval stages of this insect, JH regulation of larval development and mode of action of JH analogs are not well studied.
View Article and Find Full Text PDFThree different pheromone binding proteins (PBPs) can typically be found in the sensilla lymph of noctuid moth antennae, but their relative contributions in perception of the sex pheromone is rarely verified in vivo. Previously, we demonstrated that SlitPBP3 plays a minor role in the sex pheromone detection in Spodoptera litura using the CRISPR/Cas9 system. In the present study, the roles of two other SlitPBPs (SlitPBP1 and SlitPBP2) are further verified using the same system.
View Article and Find Full Text PDFSex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis.
View Article and Find Full Text PDFThe high sensitivity of the olfactory system is essential for feeding and oviposition in moth insects, and some chemosensory proteins (CSPs) are thought to play roles in this system by binding and carrying hydrophobic odorants across the aqueous sensillar lymph. In this study, to identify the olfactory CSPs from a repertoire of 21 CSP members in the notorious rice pest Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), tissue expression patterns were firstly examined by quantitative real-time polymerase chain reaction (qPCR). It showed that CSP2 was antennae specific and seven more CSPs (CSP1, 3, 4, 6, 15, 16, and 17) were antennae biased in expression, suggesting their olfactory roles; while other CSPs were multiple-tissue expressed and non-antennae biased, suggesting other functions for these genes.
View Article and Find Full Text PDFPheromone-binding proteins (PBPs) are thought to bind and transport sex pheromones onto the olfactory receptors on the dendrite membrane of olfactory neurons, and thus play a vital role in sex pheromone perception. However, the function of PBPs has rarely been demonstrated in vivo. In this study, two PBPs (PBP1 and PBP3) of Chilo suppressalis, one of the most notorious pyralid pests, were in vivo functionally characterized using insects with the PBP gene knocked out by the CRISPR/Cas9 system.
View Article and Find Full Text PDFPheromone binding proteins (PBPs) are thought to play crucial roles in perception of the sex pheromones particularly in noctuid moths, but this is rarely in vivo evidenced due to lacking an effective technique. Here, we reported an in vivo functional study of PBP1 in the important lepidopteran pest Helicoverpa armigera (HarmPBP1), by using the CRISPR/Cas9 system. Efficient and heritable mutagenesis was achieved by egg injection of mixture of Cas9-mRNA and HarmPBP1-sgRNA.
View Article and Find Full Text PDFInsect Biochem Mol Biol
August 2016
Functional gene analysis by using genome editing techniques is limited only in few model insects. Here, we reported an efficient and heritable gene mutagenesis analysis in an important lepidopteran pest, Spodoptera litura, using the CRISPR/Cas9 system. By using this system, we successfully obtained the homozygous S.
View Article and Find Full Text PDF