Publications by authors named "Guangzhao Qin"

Vertically stacked van der Waals (vdW) heterostructures not only provide a promising platform in terms of band alignment, but also constitute fertile ground for fundamental science and attract tremendous practical interest towards their use in various device applications. Beyond most two-dimensional (2D) materials, which are intrinsically non-magnetic, CrI is a novel material with magnetism dependent on its vdW-bonded layers, promising potential spintronics applications. However, for particular device applications, a heterostructure is commonly fabricated and it is necessary to examine the effect of the interface or contact atoms on the magnetic properties of the heterostructure.

View Article and Find Full Text PDF

In inorganic crystals, phonons are the elementary excitations describing the collective atomic motions. The study of phonons plays an important role in terms of understanding thermal transport behavior and acoustic properties, as well as exploring the interactions between phonons and other energy carriers in materials. Thus, efficient and accurate prediction of phonon transport properties such as thermal conductivity is crucial for revealing, designing, and regulating material properties to meet practical requirements.

View Article and Find Full Text PDF

Dimethyl methylphosphonate (DMMP) is commonly used as an alternative for demonstrating to detect sarin, which is one of the most toxic but odorless chemical nerve agents. Among various types of DMMP sensors, those utilizing surface acoustic wave (SAW) technology provide notable advantages such as wireless/passive monitoring, digital output, and a compact, portable design. However, key challenges for SAW-based DMMP sensors operated at room temperature lies in simultaneous enhancement of sensitivities and reduction of detection limits.

View Article and Find Full Text PDF

Highly vertically thermally conductive silicon rubber (SiR) composites are widely used as thermal interface materials (TIMs) for chip cooling. Herein, inspired by water transport and transpiration of Moso bamboo-forests extensively existing in south China, and guided by filler self-assembly simulation, bamboo-forest-like heat conduction networks, with bamboo-stems-like vertically aligned polydopamine-coated carbon fibers (VA-PCFs), and bamboo-leaves-like horizontally layered AlO(HL-AlO), are rationally designed and constructed. VA-PCF/HL-AlO/SiR composites demonstrated enhanced heat conduction properties, and their through-plane thermal conductivity and thermal diffusivity reached 6.

View Article and Find Full Text PDF

Compact reliable structure and strong electromechanical coupling are hot pursuits in piezoelectric vibration energy harvester (PVEH) design. PVEH with a static arc stopper makes piezoelectric stress uniformly distributed and widens the frequency band by collision but wastes space. This Article proposes a hinged PVEH with two arc mass stoppers (AS-H-PVEH).

View Article and Find Full Text PDF

With the rapid development of various fields, including aerospace, industrial measurement and control, and medical monitoring, the need to quantify flow velocity measurements is increasing. It is difficult for traditional flow velocity sensors to fulfill accuracy requirements for velocity measurements due to their small ranges, susceptibility to environmental impacts, and instability. Herein, to optimize sensor performance, a flexible microelectromechanical system (MEMS) thermal flow sensor is proposed that combines the working principles of thermal loss and thermal temperature difference and utilizes a flexible cavity substrate made of a low-thermal-conductivity polyimide/SiO (PI/SiO) composite porous film to broaden the measurement range and improve the sensitivity.

View Article and Find Full Text PDF

High-efficient heat dissipation plays critical role for high-power-density electronics. Experimental synthesis of ultrahigh thermal conductivity boron arsenide (BAs, 1300 W mK) cooling substrates into the wide-bandgap semiconductor of gallium nitride (GaN) devices has been realized. However, the lack of systematic analysis on the heat transfer across the GaN-BAs interface hampers the practical applications.

View Article and Find Full Text PDF

The negative Poisson's ratio (NPR) effect usually endows materials with promising ductility and shear resistance, facilitating a wider range of applications. It has been generally acknowledged that alloys show strong advantages in manipulating material properties. Thus, a thought-provoking question arises: how does alloying affect the NPR? In this paper, based on first-principles calculations, we systematically study the NPR in two-dimensional (2D) GaN and AlN, and their alloy of AlGaN.

View Article and Find Full Text PDF

The two-dimensional (2D) MAZ family has received extensive attention in manipulating its electronic structure and achieving intriguing physical properties. However, engineering the electronic properties remains a challenge. Herein, based on first-principles calculations, we systematically investigate the effect of biaxial strains on the electronic structure of 2D Rashba MoSiGeN (MSGN), and further explore how the interlayer interactions affect the Rashba spin splitting (RSS) in such strained layered MSGN systems.

View Article and Find Full Text PDF

Anisotropic heat transfer is crucial for advanced thermal management in nanoelectronics, optoelectronics, thermoelectrics, . Traditional approaches modifying thermal conductivity (κ) mostly adjust the magnitude but disregard anisotropy. Herein, by solving the Boltzmann transport equation from first principles, we report κ anisotropy modulation by alloying gallium nitride (GaN) and aluminum nitride (AlN).

View Article and Find Full Text PDF

Insulating thermally conductive polymer composites are in great demand in integrated-circuit packages, for efficient heat dissipation and to alleviative short-circuit risk. Herein, the continuous oriented hexagonal boron nitride (h-BN) frameworks (o-BN@SiC) were prepared self-assembly and chemical vapor infiltration (CVI) interface welding. The insulating o-BN@SiC/epoxy (o-BN@SiC/EP) composites exhibited enhanced thermal conductivity benefited from the CVI-SiC-welded BN-BN interface.

View Article and Find Full Text PDF

High thermal conductivity is of great interest due to the novel applications in high-performance heat dissipation for microelectronic devices. Two-dimensional (2D) materials with graphene as a representative have attracted tremendous interest due to the excellent properties, where Cis an emerging 2D allotrope of carbon with a large bandgap. In this paper, by solving the Boltzmann transport equation based onfirst-principles calculations, the Cis predicted to have an ultrahigh thermal conductivity of 2051.

View Article and Find Full Text PDF

Reducing thermal conductivity (κ) is of great significance to lots of applications, such as thermal insulation, thermoelectrics, etc. In this study, we propose an effective approach for realizing low κ by introducing lone-pair electrons or making the lone-pair electrons stereochemically active through bond nanodesigning. By cutting at the (111) cross section of the three-dimensional cubic boron arsenide (-BAs), the κ is lowered by more than 1 order of magnitude in the resultant two-dimensional graphene-like BAs (BAs).

View Article and Find Full Text PDF

With the development of chip technology, the density of transistors on integrated circuits is increasing and the size is gradually shrinking to the micro-/nanoscale, with the consequent problem of heat dissipation on chips becoming increasingly serious. For device applications, efficient heat dissipation and thermal management play a key role in ensuring device operation reliability. In this review, we summarize the thermal management applications based on 2D materials from both theoretical and experimental perspectives.

View Article and Find Full Text PDF

Nanoclusters like fullerenes as the unit to build intriguing two-dimensional (2D) topological structures is of great challenge. Here we propose three bridged fullerene monolayers and comprehensively investigate the novel fullerene monolayer (α-C-2D) as synthesized experimentally [Hou et al. 2022, 606, 507-510] by first-principles calculations.

View Article and Find Full Text PDF

Two-dimensional materials have attracted significant research interest due to the fantastic properties that are unique to their bulk counterparts. In this paper, from the first-principles, we predicted the stable structure of a monolayer counterpart of γ-CuI (cuprous iodide) that is a p-type wide bandgap semiconductor. The monolayer CuI presents multifunctional superiority in terms of electronic, optical, and thermal transport properties.

View Article and Find Full Text PDF

Thermal transport plays a key role in the working stability of gallium nitride (GaN) based optoelectronic devices, where doping has been widely employed for practical applications. However, it remains unclear how doping affects thermal transport. In this study, based on first-principles calculations, we studied the doping effect on the thermal transport properties of GaN by substituting Ga with In/Al atoms.

View Article and Find Full Text PDF

The two-dimensional (2D) materials, represented by graphene, stand out in the electrical industry applications of the future and have been widely studied. As commonly existing in electronic devices, the electric field has been extensively utilized to modulate the performance. However, how the electric field regulates thermal transport is rarely studied.

View Article and Find Full Text PDF

In recent years, the energy crisis and global warming have been urgent problems that need to be solved. As is known, thermoelectric (TE) materials can transfer heat energy to electrical energy without air pollution. High-throughput calculations as a novel approach are adopted by screening promising TE materials.

View Article and Find Full Text PDF

The negative Poisson's ratio (NPR) is a novel property of materials, which enhances the mechanical feature and creates a wide range of application prospects in lots of fields, such as aerospace, electronics, medicine, etc. Fundamental understanding on the mechanism underlying NPR plays an important role in designing advanced mechanical functional materials. However, with different methods used, the origin of NPR is found different and conflicting with each other, for instance, in the representative graphene.

View Article and Find Full Text PDF

With the miniaturization and integration of nanoelectronic devices, efficient heat removal becomes a key factor affecting their reliable operation. Two-dimensional (2D) materials, with high intrinsic thermal conductivity, good mechanical flexibility, and precisely controllable growth, are widely accepted as ideal candidates for thermal management materials. In this work, by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations, we investigated the thermal conductivity of novel 2D layered MSiN (M = Mo, W).

View Article and Find Full Text PDF

Two-dimensional MgC, one of the typical representative MXene materials, is attracting lots of attention due to its outstanding properties. In this study, we find the thermal conductivity of monolayer MgC is more than 2 orders of magnitude lower than graphene and is even lower than MoS despite the relatively lighter atoms of Mg and C. Based on the comparative analysis with graphene, silicene, and MoS, the underlying mechanism is found lying in the unique arrangement of atoms (lighter atoms in the middle plane) and large electronegativity difference in MgC.

View Article and Find Full Text PDF

The energy problem has recently become increasingly more serious, therefore the rational use of heat energy and conversion into electrical energy is particularly important. The thermoelectric (TE) field is closely related to human life, as heat from automobiles, heat dissipation from high-power electrical appliances, or other electrical products that produce a lot of heat, can all be transformed with TE materials. The search for TE materials with an excellent performance and effective TE optimization strategies (STs) has attracted significant attention owing to the fact that thermal energy can be directly converted into electric energy.

View Article and Find Full Text PDF

Correction for 'Ultra-high thermal conductivities of tetrahedral carbon allotropes with non-simple structures' by Qiang Chen , , 2021, DOI: 10.1039/d1cp02347k.

View Article and Find Full Text PDF