Infected bone defects (IBDs) exhibit impaired healing due to excessive inflammation triggered by pathogen-associated molecular patterns (PAMPs) from bacteria. As a vital factor in orchestrating immune responses, mitochondrial homeostasis maintenance is central to inflammation blockade. This research developed a chameleon-like nanoplatform by covering hydroxyapatite nanoparticles with a cerium ion coordinated tannic acid supramolecular network (HA@Ce-TA), which adaptively functions to regulate mitochondrial homeostasis based on intra- and extracellular environments.
View Article and Find Full Text PDFSince the microgap between implant and surrounding connective tissue creates the pass for pathogen invasion, sustained pathological stimuli can accelerate macrophage-mediated inflammation, therefore affecting peri-implant tissue regeneration and aggravate peri-implantitis. As the transmucosal component of implant, the abutment therefore needs to be biofunctionalized to repair the gingival barrier. Here, a mussel-bioinspired implant abutment coating containing tannic acid (TA), cerium and minocycline (TA-Ce-Mino) is reported.
View Article and Find Full Text PDFThe healing of infected bone defects (IBD) is a complex physiological process involving a series of spatially and temporally overlapping events, including pathogen clearance, immunological modulation, vascularization, and osteogenesis. Based on the theory that bone healing is regulated by both biochemical and biophysical signals, in this study, a copper doped bioglass (CuBGs)/methacryloyl-modified gelatin nanoparticle (MA-GNPs)/methacrylated silk fibroin (SilMA) hybrid hydrogel is developed to promote IBD healing. This hybrid hydrogel demonstrates a dual-photocrosslinked interpenetrating network mechanism, wherein the photocrosslinked SilMA as the main network ensures structural integrity, and the photocrosslinked MA-GNPs colloidal network increases strength and dissipates loading forces.
View Article and Find Full Text PDF