In recent years, microsphere-assisted microscopy (MAM) and atomic force microscope (AFM) have been rapidly developed to meet the measurement needs of microstructures. However, the positioning of microspheres, the inability of AFM to touch the underlying sample through the transparent insulating layer, and the challenge of AFM fast positioning limit their use in practical measurements. In this paper, we propose a method that combines MAM with AFM by adhering the microsphere to the cantilever.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Defect engineering is a promising means to create patterns on two-dimensional (2D) materials to enable unconventional properties. However, defects usually exist abundantly and randomly on 2D materials, which makes it difficult to tune the properties in a controllable manner. Therefore, it is highly desirable to find out the formation mechanism and controllable fabrication method of defects on 2D materials.
View Article and Find Full Text PDFNanotechnology
February 2022
Atomically two-dimensional (2D) materials have generated widespread interest for novel electronics and optoelectronics. Specially, owing to atomically thin 2D structure, the electronic bandgap of 2D semiconductors can be engineered by manipulating the surrounding dielectric environment. In this work, we develop an effective and controllable approach to manipulate dielectric properties of h-BN through gallium ions (Ga) implantation for the first time.
View Article and Find Full Text PDFvan der Waals layered heterojunctions have a variety of band offsets that open up possibilities for a wide range of novel and multifunctional devices. However, due to their poor pristine carrier concentrations and limited band modulation methods, multifunctional p-n heterojunctions are very difficult to achieve. In this report, we developed a highly effective N2O plasma process to treat MoTe2/MoS2 heterojunctions.
View Article and Find Full Text PDF