Boron (B) is an important limiting factor for plant growth and yield in saline soils, but the underlying molecular mechanisms remain poorly understood. In this study, we found that appropriate B supply obviously complemented rapeseed (Brassica napus L.) growth under salinity accompanied by higher biomass production and less reactive oxygen species accumulation.
View Article and Find Full Text PDFThe improvement in the utilization rate and nutritional value of soybean meal (SBM) represents a significant challenge in the feed industry. This study conducted a 50 kg SBM fermentation based on the 300 g small-scale fermentation of SBM in early laboratory research, to explore the combined effects of lactic acid bacteria (LAB) and acid protease on fermentation quality, chemical composition, microbial population, and macromolecular protein degradation during fermentation and aerobic exposure of SBM in simulated actual production. The results demonstrated that the increase in crude protein content and reduction in crude fiber content were considerably more pronounced after fermentation for 30 days (d) and subsequent aerobic exposure, compared to 3 d.
View Article and Find Full Text PDFThe impacts of four extraction techniques, including hot water, ultrasonic-assisted, complex enzyme-assisted and acid-assisted methods, on the morphological, physicochemical properties and bioactivities of Asparagus cochinchinensis (poly)saccharides (EACP, WACP, UACP, and AACP) were investigated and compared. The four samples were mainly composed of glucose, fructose, and galactose with molar ratios of 50.8:22.
View Article and Find Full Text PDFMycotoxins, secondary metabolites of fungi, are a major obstacle to the utilization of animal feed for various reasons. Wheat straw (WS) is hollow, and miscellaneous bacteria can easy attach to its surface; the secondary fermentation frequency after silage is high, and there is a risk of mycotoxin poisoning. In this study, a storage fermentation process was used to preserve and enhance fermentation quality in WS through the addition of Artemisia argyi (AA), which is an effective method to use WS resources and enhance aerobic stability.
View Article and Find Full Text PDFG-protein-coupled receptor (GPCR) density at the cell surface is thought to regulate receptor function. Spatially resolved measurements of local-density effects on GPCRs are needed but technically limited by density heterogeneity and mobility of membrane receptors. We now develop a deep-learning (DL)-enhanced diffusion imaging assay that can measure local-density effects on ligand-receptor interactions in the plasma membrane of live cells.
View Article and Find Full Text PDFBlinking carbon dots (CDs) have attracted attention as a probe for single molecule localization microscopy (SMLM), yet quantitative analysis is limited because of inept blinking and low signal-to-noise ratio (SNR). Here we report the design and synthesis of near-infrared (NIR) blinking CDs with a maximum emission of around 750 nm by weaving a nitrogen-doped aromatic backbone with surplus carboxyl groups on the surface. The NIR-CDs allow conjugation to monovalent antibody fragments for labeling and imaging of cellular receptors as well as afford increases of 52% in SNR and 33% in localization precision over visible CDs.
View Article and Find Full Text PDFWhole-crop wheat silage (WCWS) is an excellent feed material for ruminants. However, microbial fermentation during silage production consumes valuable nutrients, decreasing the quality of silage. The main objective of this study was to assess how the addition of increasing amounts of (AA) affected fermentation quality, microbial composition, and mycotoxin production in whole-crop wheat at dough stage (WCWD) silage during ensiling to aerobic exposure compared with (LB).
View Article and Find Full Text PDFSilage, especially whole crop corn silage (WCCS), is an important part of ruminant diets, with its high moisture content and rich nutrient content, which can easily cause contamination by mold and their toxins, posing a great threat to ruminant production, food safety and human health. The objective of this study was to examine effects of lactic acid bacteria (LAB) () subsp. ZA3 and (AA) on the fermentation characteristics, microbial community and mycotoxin of WCCS during 60 days (d) ensiling and subsequent 7 d aerobic exposure.
View Article and Find Full Text PDFThis study assessed the effects of () in combination with protease on fermentation characteristics and microbial communities during ensiling and aerobic exposure phases of soybean meal (SBM). In this study, response surface methodology (RSM) was used to optimize the optimal growth conditions of ZZUPF95, which produced protease, and fermented SBM under the optimal fermentation conditions. The fermentation test was divided into four groups as follows: CK (Control check), ZZUPF95, Protease and ZZUPF95+Protease groups.
View Article and Find Full Text PDFLactic acid bacteria (LAB), which are characterized by producing various functional metabolites, including antioxidants, organic acids, and antimicrobial compounds, are widely used in the food industry to improve gut health and prevent the growth of spoilage microorganisms. With the continual incidence of foodborne disease and advocacy of consumers for gut health, LAB have been designated as vital biopreservative agents in recent years. Therefore, LAB with excellent antimicrobial properties and environmental tolerance should be explored further.
View Article and Find Full Text PDFOligomeric organization of G protein-coupled receptors is proposed to regulate receptor signaling and function, yet rapid and precise identification of the oligomeric status especially for native receptors on a cell membrane remains an outstanding challenge. By using blinking carbon dots (CDs), we now develop a deep learning (DL)-based blinking fingerprint recognition method, named deep-blinking fingerprint recognition (BFR), which allows automatic classification of CD-labeled receptor organizations on a cell membrane. This DL model integrates convolutional layers, long-short-term memory, and fully connected layers to extract time-dependent blinking features of CDs and is trained to a high accuracy (∼95%) for identifying receptor organizations.
View Article and Find Full Text PDFEnterotoxigenic (ETEC), which expresses K88 is the principal microorganism responsible for bacterial diarrhea in pig husbandry, and the indiscriminate use of antibiotics has caused many problems; therefore, antibiotics need to be replaced in order to prevent diarrhea caused by ETEC K88. The objective of this study was to screen excellent lactic acid bacteria (LAB) strains that inhibit ETEC K88 and explore their effects as probiotic supplementation on reproduction, growth performance, diarrheal incidence, and antioxidant capacity of serum in sows and weaned piglets. Three LAB strains, P7, P8, and P15, screened from 295 LAB strains and assigned to () , , and with high inhibitory activity against ETEC K88 were selected for a study on feeding of sows and weaned piglets.
View Article and Find Full Text PDFCalmodulin (CaM) is considered as the most significant Ca signaling messenger that mediate various biochemical and physiological reactions. IQ domain (IQD) proteins are plant specific CML/CaM calcium binding which are characterized by domains of 67 amino acids. 50, 50, 94, and 99 IQD genes were detected from G.
View Article and Find Full Text PDFLactic acid bacteria (LAB) convert carbohydrates into organic acids [mainly lactic acid (LA)], which reportedly have bactericidal activities. is a Gram-negative bacteria which infects birds, and causes significant economic losses. In this study, we investigated the antibacterial activity of the LA producing, QZ1178 from Qula (fermented food), against , using the Oxford cup method.
View Article and Find Full Text PDFHeat shock transcription factors (HSF) have been demonstrated to play a significant transcriptional regulatory role in plants and considered as an integral part of signal transduction pathways against environmental stresses especially heat stress. Despite of their importance, HSFs have not yet been identified and characterized in all cotton species. In this study, we report the identification of 42, 39, 67, and 79 non-redundant HSF genes from diploid cottons G.
View Article and Find Full Text PDFstrains were a type of epiphytic bacterium widely used in fermented foods and products in the biochemical and pharmaceutical industries but data on its presence in foods from Qinghai-Tibet Plateau in China was scarce. In this study, molecular analysis based on multilocus sequence typing (MLST) with eight housekeeping genes (, , and ) was carried out on 45 strains isolated from different plants and dairy products from Qinghai-Tibet Plateau in China. The objective of this study was to perform genetic diversity analysis and explore the relationship between strains and isolate samples or separate regions.
View Article and Find Full Text PDFSubcritical water treatment has received considerable attention due to its cost effectiveness and environmentally friendly properties. In this investigation, Chinese quince fruits were submitted to subcritical water treatment (130, 150, and 170 °C), and the influence of treatments on the structure of milled wood lignin (MWL) was evaluated. Structural properties of these lignin samples (UL, L130, L150, and L170) were investigated by high-performance anion exchange chromatography (HPAEC), FT-IR, gel permeation chromatography (GPC), TGA, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 2D-Heteronculear Single Quantum Coherence (HSQC) -NMR, and P-NMR.
View Article and Find Full Text PDFFor screening excellent lactic acid bacteria (LAB) strains to inhibit enterotoxigenic (ETEC) K88, inhibitory activities of more than 1100 LAB strains isolated from different materials, and kept in the lab, were evaluated in this study. Nine strains with inhibition zones, at least 22.00 mm (including that of a hole puncher, 10.
View Article and Find Full Text PDFIn this study, three pretreatment processes were evaluated for their effects on the structural features and antioxidant activities of lignins extracted by the acetosolv process from the fruit of Chinese quince. The three pretreatments included dephenolization, sugar removal, and multiple processes (a combination of both dephenolization and sugar removal). The results showed that after sugar removal pretreatment, the carbohydrate content, the molecular weight and S/G value of the lignin fractions decreased.
View Article and Find Full Text PDFLignin is an increasingly valuable raw material for industrial, pharmaceutical and the food industries; natural antioxidants are also being used more and more widely. The Chinese quince fruits have an abundance of lignins with antioxidant properties; however, the lignins cannot be isolated by the methods conventionally used on other sources (e.g.
View Article and Find Full Text PDF