In this study, biodegradable Zn-Cu-Mn alloy stents were implanted into porcine coronary artery for 18 months, and the in vivo biosafety and efficacy as well as the degradation behavior were systematically studied. Results showed a rapid endothelialization of the target vessel was achieved at 1 month post-implantation. Although the lumen diameter loss and local inflammation were observed at the early stage, the stented blood vessel could gradually recover with time.
View Article and Find Full Text PDFOsteoporotic fractures have become a common public health problem and are usually accompanied by chronic pain. Mg and Mg-based alloys are considered the next-generation orthopedic implants for their excellent osteogenic inductivity, biocompatibility, and biodegradability. However, Mg-based alloy can initiate aberrant activation of osteoclasts and modulate sensory innervation into bone callus resulting in postoperative pain at the sequential stage of osteoporotic fracture healing.
View Article and Find Full Text PDFCartilage defects caused by joint diseases are difficult to treat clinically. Tissue engineering materials provide a new means to promote the repair of cartilage defects. The purpose of this study is to design a novel scaffold of porous magnesium alloy loaded with icariin and sustained release in order to explore the effect and possible mechanism of this scaffold in repairing SD rat knee articular cartilage defect.
View Article and Find Full Text PDFEffective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects, substantial tumor recurrence, and long-lasting bone reconstruction post tumor resection. Magnesium and its alloys have recently emerged in clinics as orthopedics implantable metals but mostly restricted to mechanical devices. Here, by deposition of calcium-based bilayer coating on the surface, a Mg-based composite implant platform is developed with tailored degradation characteristics, simultaneously integrated with chemotherapeutic (Taxol) loading capacity.
View Article and Find Full Text PDFBiodegradable Zn alloys show great potential for vascular stents due to their moderate degradation rates and acceptable biocompatibility. However, the poor mechanical properties limit their applications. In this study, low alloyed Zn-2Cu-xLi (x = 0.
View Article and Find Full Text PDFIn this study, an anatomical brushite-coated Mg-Nd-Zn-Zr alloy cage was fabricated for cervical fusion in goats. The purpose of this study was to investigate the cervical fusion effect and degradation characteristics of this cage in goats. The Mg-Nd-Zn-Zr alloy cage was fabricated based on anatomical studies, and brushite coating was prepared.
View Article and Find Full Text PDFInsufficient antibacterial effects and over-fast degradation are the main limitations of magnesium (Mg)-based orthopedic implants. In this study, a sandwiched composite coating containing a triclosan (TCS)-loaded poly(lactic acid) (PLA) layer inside and brushite (DCPD) layer outside was prepared on the surface of the Mg-Nd-Zn-Zr (denoted as JDBM) implant. degradation tests revealed a remarkable improvement in the corrosion resistance and moderate degradation rate.
View Article and Find Full Text PDFNonfouling surfaces are crucial in applications such as biosensors, medical implants, marine coatings, and drug delivery vehicles. However, their long-term coating stability and robust surface binding strength in physiological media remain challenging. Herein, a phosphonate-grafted, PEGylated copolymer on the hydroxyapatite (HA) surface is proposed to significantly improve the adsorption stability and thus enhance the biofunction durability accordingly.
View Article and Find Full Text PDFSoft materials bearing rigid, lightweight, and vibration-dampening properties offer distinct advantages over traditional wooden and metal-based fillings for spent fuel transport casks, due to their low density, tunable structure, excellent mechanical properties, and ease of processing. In this study, a novel type of rigid polyurethane foam is prepared using a conventional polycondensation reaction between isocyanate and hydroxy groups. Moreover, the density and size of the pores in these foams are precisely controlled through simultaneous gas generation.
View Article and Find Full Text PDFWith the increasing and aging of global population, there is a dramatic rise in the demand for implants or substitutes to rehabilitate bone-related disorders which can considerably decrease quality of life and even endanger lives. Though titanium and its alloys have been applied as the mainstream material to fabricate implants for load-bearing bone defect restoration or temporary internal fixation devices for bone fractures, it is far from rare to encounter failed cases in clinical practice, particularly with pathological factors involved. In recent years, smart stimuli-responsive (SSR) strategies have been conducted to functionalize titanium implants to improve bone regeneration in pathological conditions, such as bacterial infection, chronic inflammation, tumor and diabetes mellitus, SSR implants can exert on-demand therapeutic and/or pro-regenerative effects in response to externally applied stimuli (such as photostimulation, magnetic field, electrical and ultrasound stimulation) or internal pathology-related microenvironment changes (such as decreased pH value, specific enzyme secreted by bacterial and excessive production of reactive oxygen species).
View Article and Find Full Text PDFBiodegradable magnesium (Mg) alloys have been extensively investigated in orthopedic implants due to their suitable mechanical strength and high biocompatibility. However, no studies have reported whether Mg alloys can be used to repair lamina defects, and the biological mechanisms regulating osteogenesis are not fully understood. The present study developed a lamina reconstruction device using our patented biodegradable Mg-Nd-Zn-Zr alloy (JDBM), and brushite (CaHPO·2HO, Dicalcium phosphate dihydrate, DCPD) coating was developed on the implant.
View Article and Find Full Text PDFIn this study, biomimetic porous magnesium alloy scaffolds were prepared to repair femoral bone defects in ovariectomized osteoporotic rats. The purpose of the study was to investigate the effect of biomimetic porous magnesium alloy scaffolds on repairing osteoporotic bone defects and possible mechanisms. The animal model of osteoporosis was established in female SD rats.
View Article and Find Full Text PDFZinc (Zn) alloys are a promising biodegradable material for vascular stent applications. This study aimed to fabricate biodegradable Zn-2.0Cu-0.
View Article and Find Full Text PDFMagnesium alloys are an ideal material for biodegradable vascular stents, which can be completely absorbed in the human body, and have good biosafety and mechanical properties. However, the rapid corrosion rate and excessive localized corrosion, as well as challenges in the preparation and processing of microtubes for stents, are restricting the clinical application of magnesium-based vascular stents. In the present work we will give an overview of the recent progresses on biodegradable magnesium based vascular stents including magnesium alloy design, high-precision microtubes processing, stent shape optimisation and functional coating preparation.
View Article and Find Full Text PDFChondral defects caused by osteoarthritis (OA) are common but difficult to manage due to their limited capacity for self-repair. Further, the activated macrophages induced by OA stimulates chondrocytes degradation and inhibits regeneration, further impeding cartilage repair. Therefore, biomaterials with the potential for blocking vicious cycles between activated macrophages and chondrocytes would be promising for use in the treatment of chondral defects caused by OA.
View Article and Find Full Text PDFPurpose: This study aimed to evaluate the benefits and risks of patients with peripheral artery disease (PAD) treated with Absorb everolimus-eluting bioresorbable vascular scaffold (BVS) by analyzing all the published studies on the clinical characteristics of patients with PAD.
Materials And Methods: PubMed, Embase, and the Cochrane Library were searched for relevant studies. Efficacy, safety, and basic characteristics were analyzed.
Recently, zinc (Zn) alloy has been considered as a promising biodegradable material due to its excellent physiological degradable behavior and acceptable biocompatibility. However, poor mechanical performance limits its application as vascular stents. In this study, novel biodegradable Zn-2.
View Article and Find Full Text PDFBackground: Restenosis is one of the worst side effects of percutaneous coronary intervention (PCI) due to neointima formation resulting from the excessive proliferation and migration of vascular smooth muscle cells (VSMCs) and continuous inflammation. Biodegradable Mg-based alloy is a promising candidate material because of its good mechanical properties and biocompatibility, and biodegradation of cardiovascular stents. Although studies have shown reduced neointima formation after Mg-based CVS implantation , these findings were inconsistent with studies, demonstrating magnesium-mediated promotion of the proliferation and migration of VSMCs.
View Article and Find Full Text PDFAdditive manufacturing (AM) has enabled the fabrication of biodegradable porous metals to satisfy the desired characteristics for orthopedic applications. The geometrical design on AM biodegradable metallic scaffolds has been found to offer a favorable opportunity to regulate their mechanical and degradation performance in previous studies, however mostly confined to static responses. In this study, we presented the effect of the geometrical design on the dynamic responses of AM Mg scaffolds for the first time.
View Article and Find Full Text PDFAlthough the drug-eluting stent (DES) has become the standard for percutaneous coronary intervention (PCI)-based revascularization, concerns remain regarding the use of DES, mainly due to its permanent rigid constraint to vessels. A drug-eluting bioresorbable stent (BRS) was thus developed as an alternative to DES, which can be absorbed entirely after its therapeutic period. Magnesium (Mg)-based BRSs have attracted a great deal of attention due to their suitable mechanical properties, innovative chemical features, and well-proven biocompatibility.
View Article and Find Full Text PDF