Soil nutrient stoichiometry and its environmental controllers play vital roles in understanding soil-plant interaction and nutrient cycling under a changing environment, while they remain poorly understood in alpine grassland due to lack of systematic field investigations. We examined the patterns and controls of soil nutrients stoichiometry for the top 10cm soils across the Tibetan ecosystems. Soil nutrient stoichiometry varied substantially among vegetation types.
View Article and Find Full Text PDFVertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM).
View Article and Find Full Text PDFThe Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2016
Recently considerable researches have focused on monitoring vegetation changes because of its important role in regula- ting the terrestrial carbon cycle and the climate system. There were the largest areas with high-altitudes in the Qinghai-Tibet Plateau (QTP), which is often referred to as the third pole of the world. And vegetation in this region is significantly sensitive to the global warming.
View Article and Find Full Text PDFIn the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS).
View Article and Find Full Text PDFEmploying heat balance Dynamax packaged sap flow measuring system and automatic weather recording system, the sap flow of artificial Caragana microphylla community on Horqin sandy land of northeast China was monitored consecutively in 2006, and the photosynthetically effective radiation, air temperature, relative humidity and wind velocity were measured synchronously. According to the manual records of weather conditions, four most representative weather conditions were gathered up to analyze the relationships of C. microphylla sap flow and its single branch water consumption with test meteorological factors.
View Article and Find Full Text PDF