Access to clean and renewable energy, osmotic energy from salinity gradient difference, for example, is central to the sustainability of human civilization. Despite numerous examples of nanofluidic membranes for osmotic energy conversion, one produced from abundant and renewable biomass resources remains largely unexplored. In this work, cotton-derived cellulose nanocrystals (CNCs) are employed to fabricate a membrane by self-assembly with polyvinyl alcohol (PVA) and subsequent in situ growth of metal-organic framework (MOF), UiO-66-(COOH), to provide an example.
View Article and Find Full Text PDFGiven the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA).
View Article and Find Full Text PDFThe content and density of traffic signs directly affect the operation of urban road traffic and drivers. To overcome the limitations of quantitative research on the density threshold of traffic signs on urban roads, a real vehicle experiment was conducted to record the psychological characteristics of drivers. Four psychological parameters of drivers-pupil area, fixation intensity, heart rate change rate, and heart rate variability-were explored.
View Article and Find Full Text PDFSaccharides are involved in nearly all life processes. However, due to the complexity and diversity of saccharide structures, their selective recognition is one of the most challenging tasks. Distinct from conventional receptor designs that rely on delicate and complicated molecular structures, here a novel and precise ternary co-assembled strategy is reported for achieving saccharide recognition, which originates from a halogen ions-driven aggregation-induced emission module called p-Toluidine, N, N'-1-propen-1-yl-3-ylidene hydrochloride (PN-Tol).
View Article and Find Full Text PDFSteviol glycosides (SGs) are a class of high-potency noncalorie natural sweeteners made up of a common diterpenoid core and varying glycans. Thus, the diversity of glycans in composition, linkage, and isomerism results in the tremendous structural complexity of the SG family, which poses challenges for the precise identification and leads to the fact that SGs are frequently used in mixtures and their variances in biological activity remain largely unexplored. Here we show that a wild-type aerolysin nanopore can detect and discriminate diverse SG species through the modulable electro-osmotic flow effect at varied applied voltages.
View Article and Find Full Text PDFSepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Research indicates that circulating histones, as pathogenic factors, may represent a therapeutic target for sepsis. However, effectively clearing circulating histones poses a challenge due to their structural similarity to normal blood proteins, their low abundance in the bloodstream, and serious interference from other blood biomacromolecules.
View Article and Find Full Text PDFAlzheimer's disease (AD) remains a challenging neurodegenerative disorder with limited therapeutic success. Traditional Chinese Medicine (TCM), as a promising new source for AD, still requires further exploration to understand its complex components and mechanisms. Here, focused on addressing Aβ (1-40) aggregation, a hallmark of AD pathology, we employed a Thioflavin T fluorescence labeling method for screening the active molecular library of TCM which we established.
View Article and Find Full Text PDFThe membrane emulsification technique enables the self-assembly of cellulose nanocrystals (CNCs) confined within a spherical geometry for large-scale production. The resulting solid microspheres show long-range ordering with chiral nematic structures, and this fascinating hierarchical architecture can even be transferred to mesoporous carbon or silica microparticles by a sacrificial template method.
View Article and Find Full Text PDFGlycans play vital roles in nearly all life processes of multicellular organisms, and understanding these activities is inseparable from elucidating the biological significance of glycans. However, glycan research has lagged behind that of DNA and protein due to the challenges posed by structural heterogeneity and isomerism (i.e.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed.
View Article and Find Full Text PDFBoroxines are significant structures in the production of covalent organic frameworks, anion receptors, self-healing materials, and others. However, their utilization in aqueous media is a formidable task due to hydrolytic instability. Here we report a water-stable boroxine structure discovered from 2-hydroxyphenylboronic acid.
View Article and Find Full Text PDFIntegrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission.
View Article and Find Full Text PDFOsmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low-performance ion exchange membrane to achieve high-efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low-cost raw materials remains challenging.
View Article and Find Full Text PDFSUMOylation is an important and highly dynamic post-translational modification (PTM) process of protein, and its disequilibrium may cause various diseases, such as cancers and neurodegenerative disorders. SUMO proteins must be accurately detected to understand disease states and develop effective drugs. Reliable antibodies against SUMO2/3 are commercially available; however, efficient detectors are yet to be developed for SUMO1, which has only 50% homology with SUMO2 and SUMO3.
View Article and Find Full Text PDFUmami peptides are small molecular weight oligopeptides that play a role in umami taste attributes. However, the identification of umami peptides is easily limited by environmental conditions, and the abundant source and high chromatographic separation efficiency remain difficult. Herein, we report a robust strategy based on a phage random linear heptapeptide library that targets the T1R1-Venus flytrap domain (T1R1-VFT).
View Article and Find Full Text PDFInnovative modes of response can greatly push forward chemical sensing processes and subsequently improve sensing performance. Classical chemical sensing modes seldom involve the transition of a delicate molecular assembly during the response. Here, we display a sensing mode for polyamine detection based on an order-order transition of iron-sulfur complexes upon their assembly.
View Article and Find Full Text PDFBlood infection can release toxic bacterial lipopolysaccharides (LPSs) into bloodstream, trigger a series of inflammatory reactions, and eventually lead to multiple organ dysfunction, irreversible shock, and even death, which seriously threatens human life and health. Herein, a functional block copolymer with excellent hemocompatibility is proposed to enable broad-spectrum clearance of LPSs from whole blood blindly before pathogen identification, facilitating timely rescue from sepsis. A dipeptide ligand of histidine-histidine (HH) was designed as the LPS binding unit, and poly[(trimethylamine -oxide)--(histidine-histidine)], a functional block copolymer combining the LPS ligand of HH and a zwitterionic antifouling unit of trimethylamine -oxide (TMAO), was then designed by reversible addition-fragmentation chain transfer (RAFT) polymerization.
View Article and Find Full Text PDFOxidation and protein phosphorylation are critical mechanisms involved in regulating various cellular activities. Increasing research has suggested that oxidative stress could affect the activities of specific kinases or phosphatases, leading to alterations in the phosphorylation status of certain proteins. Ultimately, these alterations can affect cellular signaling pathways and gene expression patterns.
View Article and Find Full Text PDFLipopolysaccharide (LPS) is the primary bacterial toxin that is vital to the pathogenesis and progression of sepsis associated with extremely high morbidity and mortality worldwide. However, specific clearance of LPS from circulating blood is highly challenging because of the structural complexity and its variation between/within bacterial species. Herein, a robust strategy based on phage display screening and hemocompatible peptide bottlebrush polymer design for specific clearance of targeted LPS from circulating blood is proposed.
View Article and Find Full Text PDFInnovative therapeutic strategies are urgently needed for Alzheimer's disease (AD) due to the increasing size of the aging population and the lack of effective drug treatment. Here, we report the therapeutic effects of extracellular vesicles (EVs) secreted by microglia, including macrosomes and small EVs, on AD-associated pathology. Macrosomes strongly inhibited β-amyloid (Aβ) aggregation and rescued cells from Aβ misfolding-induced cytotoxicity.
View Article and Find Full Text PDFProtein methylation is the smallest possible yet vitally important post-translational modification (PTM). This small and chemically inert addition in proteins makes the analysis of methylation more challenging, thus calling for an efficient tool for the sake of recognition and detection. Herein, we present a nanofluidic electric sensing device based on a functionalized nanochannel that was constructed by introducing monotriazole-containing -sulfonatocalix[4]arene (TSC) into a single asymmetric polymeric nanochannel via click chemistry.
View Article and Find Full Text PDFIncreasing evidence supports the critical role of saccharides in various pathophysiological steps of tumor progression, where they regulate tumor proliferation, invasion, hematogenic metastasis, and angiogenesis. The identification and recognition of these saccharides provide a solid foundation for the development of targeted drug preparations, which are however not fully understood due to their complex and similar structures. In order to achieve fluorescence sensing of saccharides, extensive research has been conducted to design molecular probes and nanoparticles made of different materials.
View Article and Find Full Text PDFSelf-assembly of cellulose nanocrystals (CNCs) is invaluable for the development of sustainable optics and photonics. However, the functional failure of CNC-derived materials in humid or liquid environments inevitably impairs their development in biomedicine, membrane separation, environmental monitoring, and wearable devices. Here, a facile and robust method to fabricate insoluble hydrogels in a self-assembled CNC-polyvinyl alcohol (PVA) system is reported.
View Article and Find Full Text PDFStructural complexity of glycans derived from the diversities in composition, linage, configuration, and branching considerably complicates structural analysis. Nanopore-based single-molecule sensing offers the potential to elucidate glycan structure and even sequence glycan. However, the small molecular size and low charge density of glycans have restricted direct nanopore detection of glycan.
View Article and Find Full Text PDF