Publications by authors named "Guangxing Guo"

With the development of network science and graph theory, brain network research has unique advantages in explaining those mental diseases, the neural mechanism of which is unclear. Additionally, it can provide a new perspective in revealing the pathophysiological mechanism of brain diseases from the system level. The selection of threshold plays an important role in brain networks construction.

View Article and Find Full Text PDF

Tumour-associated macrophages (TAMs) play pivotal roles in promoting cancer progression. Systemic delivery of therapeutic agents to efficiently eliminate these cells remains challenging. Here, we report the development of a bio-responsive polymeric complex (PAB) that can be systemically administrated to target and eliminate TAMs in tumours.

View Article and Find Full Text PDF

We herein report the discovery of a naturally derived carbohydrate with binding affinities for two pro-angiogenic growth factors-fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB). This galacturonic acid-containing polysaccharide (EUP3) sequestered endogenous FGF-2 and PDGF-BB in vivo and promoted in situ formation and maturation of new blood vessels. Our findings suggest EUP3 as the first nonglycosaminoglycan, nonanimal-originated carbohydrate molecule that binds two pro-angiogenic growth factors to stimulate angiogenesis.

View Article and Find Full Text PDF

Our evolving understandings of cell-material interactions provide insights for using polymers to modulate cell behaviour that may lead to therapeutic applications. It is known that in certain cancers, myeloid-derived suppressor cells (MDSCs) play vital roles in promoting tumour progression, chiefly because of their 'alternatively activated' (or M2) phenotype that orchestrates immunosuppression. In this study, we demonstrated that two cationic polymers - cationic dextran (C-dextran) and polyethyleneimine (PEI) - could directly remodel these cells into an anti-tumour, 'classically activated' (or M1) phenotype, thereby stimulating these cells to express tumouricidal cytokines, reactivating the T cell functions, and prolonging the lifespan of the mice model.

View Article and Find Full Text PDF

Both tumor associated macrophages (TAMs) and tumor infiltrating dendritic cells (TIDCs) are important components in the tumor microenvironment that mediate tumor immunosuppression and promote cancer progression. Targeting these cells and altering their phenotypes may become a new strategy to recover their anti-tumor activities and thereby restore the local immune surveillance against tumor. In this study, we constructed a nucleic acid delivery system for the delivery of let-7b, a synthetic microRNA mimic.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) plays a central role in the pathogenesis of inflammatory bowel disease (IBD). Anti-TNF-α therapies have shown protective effects against colitis, but an efficient tool for target suppression of its secretion - ideally via oral administration - remains in urgent demand. In the colon tissue, TNF-α is mainly secreted by the colonic macrophages.

View Article and Find Full Text PDF