The key to sEMG (surface electromyography)-based control of robotic hands is the utilization of sEMG signals from the affected hand of amputees to infer their motion intentions. With the advancements in deep learning, researchers have successfully developed viable solutions for CNN (Convolutional Neural Network)-based gesture recognition. However, most studies have primarily concentrated on utilizing sEMG data from the hands of healthy subjects, often relying on high-dimensional feature vectors obtained from a substantial number of electrodes.
View Article and Find Full Text PDFPosition determination is a critical technical challenge to be addressed in the unmanned and intelligent advancement of crane systems. Traditional positioning techniques, such as those based on magnetic grating or encoders, are limited to measuring the positions of the main carriage and trolley. However, during crane operations, accurately determining the position of the load becomes problematic when it undergoes swinging motions.
View Article and Find Full Text PDF