Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) pandemic and continues to pose a threat to global public health through genetic mutation. In this study, we have found that an angiotensin-converting enzyme 2-specific monoclonal antibody at low concentration was able to enhance SARS-CoV-2 infection and growth in cell culture. Strikingly, it promotes SARS-CoV-2 plaque formation, resulting in accurate titration of different SARS-CoV-2 variants, particularly the newly emerged Omicron variants, which otherwise cannot be determined by standard plaque assays.
View Article and Find Full Text PDFBackground: As the COVID-19 pandemic rages on, the new SARS-CoV-2 variants have emerged in the different regions of the world. These newly emerged variants have mutations in their spike (S) protein that may confer resistance to vaccine-elicited immunity and existing neutralizing antibody therapeutics. Therefore, there is still an urgent need of safe, effective, and affordable agents for prevention/treatment of SARS-CoV-2 and its variant infection.
View Article and Find Full Text PDFHepatitis B virus (HBV) chronically infects more than 240 million people worldwide, resulting in chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV vaccine is effective to prevent new HBV infection but does not offer therapeutic benefit to hepatitis B patients. Neither are current antiviral drugs curative of chronic hepatitis B.
View Article and Find Full Text PDFThe SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine.
View Article and Find Full Text PDFZika virus (ZIKV) nonstructural protein 5 (NS5) is a multifunctional protein possessing methyltransferase and RNA-dependent RNA polymerase activities. In the present study, we have carried out an extensive mutagenesis analysis to determine the importance of nuclear localization sequences (NLS) of NS5 in its nuclear accumulation and ZIKV replication. Deletion mutagenesis analysis demonstrated that the bipartite NLS consisting of importin β1 (βNLS) and importin α/β-recognized NLS (α/βNLS) is required for NS5 nuclear accumulation.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a common cause of liver diseases, including chronic hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HBV chronically infects about 240 million people worldwide, posing a major global health problem. The current standard antiviral therapy effectively inhibits HBV replication but does not eliminate the virus unlike direct-acting antivirals (DAA) for curing hepatitis C.
View Article and Find Full Text PDFApolipoprotein E (apoE) plays dual functions in the HCV life cycle by promoting HCV infection and virion assembly and production. ApoE is a structural component on the HCV envelope. It mediates HCV cell attachment through specific interactions with the cell surface receptors such as syndecan-1 (SDC-1) and SDC-2 heparan sulfate proteoglycans (HSPGs).
View Article and Find Full Text PDFZika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as an important human viral pathogen, causing congenital malformation including microcephaly among infants born to mothers infected with the virus during pregnancy. Phylogenetic analysis suggested that ZIKV can be classified into African and Asian lineages. In this study, we have developed a stable plasmid-based reverse genetic system for robust production of both ZIKV prototype African-lineage MR766 and clinical Asian-lineage FSS13025 strains using a tetracycline (Tet)-controlled gene expression vector.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a major cause of chronic liver diseases, including hepatitis, cirrhosis, and hepatocellular carcinoma. HBV research has been hampered by the lack of robust cell culture and small animal models of HBV infection. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor has been a landmark advance in HBV research in recent years.
View Article and Find Full Text PDFPrevious studies have shown that apolipoprotein C1 (apoC1)-specific antibodies precipitated hepatitis C virus (HCV) and neutralized HCV infectivity, suggesting that apoC1 is a HCV component. However, the importance of apoC1 in the HCV life cycle has not been experimentally examined. In the present study, we sought to determine the role of apoC1 in the HCV infection and morphogenesis by knocking out the apoC1 gene using the CRISPR/Cas9 system.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the most commonly diagnosed malignancy of the liver. A more thorough understanding of HCC pathogenesis will provide novel targets for development of cancer drugs to effectively treat HCC. To further this goal, we carried out a proteomic profiling of HCC cell lines Huh-7.
View Article and Find Full Text PDFHepatitis C virus (HCV) requires multiple receptors for its attachment to and entry into cells. Our previous studies found that human syndecan-1 (SDC-1), SDC-2, and T cell immunoglobulin and mucin domain-containing protein 1 (TIM-1) are HCV attachment receptors. Other cell surface molecules, such as CD81, Claudin-1 (CLDN1), Occludin (OCLN), SR-BI, and low-density lipoprotein receptor (LDLR), function mainly at postattachment steps and are considered postattachment receptors.
View Article and Find Full Text PDFUnlabelled: Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication.
View Article and Find Full Text PDFHepatitis C virus (HCV) infection is associated with lipoproteins, and apolipoprotein E (apoE) plays an essential role in infectious HCV particles. Although the role of apoE in HCV infection is well known, its role in the replication of HCV remains unclear. The aims of this study were to determine the role of apoE in the RNA replication of major HCV genotypes 1b and 2a, and to determine whether this role is HCVgenotype-dependent using HCV genotype 1b replicon cells and HCV genotype 2a producing (HP) cells.
View Article and Find Full Text PDFUnlabelled: Recent studies demonstrated that transgenic mice expressing key human hepatitis C virus (HCV) receptors are susceptible to HCV infection, albeit at very low efficiency. Robust mouse models of HCV infection and replication are needed to determine the importance of host factors in HCV replication, pathogenesis, and carcinogenesis as well as to facilitate the development of antiviral agents and vaccines. The low efficiency of HCV replication in the humanized mouse models is likely due to either the lack of essential host factors or the presence of restriction factors for HCV infection and/or replication in mouse hepatocytes.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) is one of the leading causes of chronic hepatitis, liver cirrhosis and hepatocellular carcinomas and infects approximately 170 million people worldwide. Although several reporter systems have been developed, many shortcomings limit their use in the assessment of HCV infections. Here, we report a real-time live-cell reporter, termed the NIrD (NS3-4A Inducible rtTA-mediated Dual-reporter) system, which provides an on-off switch specifically in response to an HCV infection.
View Article and Find Full Text PDFUnlabelled: Hepatitis C virus (HCV) entry involves binding to cell surface heparan sulfate (HS) structures. However, due to the lipoprotein-like structure of HCV, the exact contribution of virion components to this interaction remains controversial. Here, we investigated the relative contribution of HCV envelope proteins and apolipoprotein E in the HS-binding step.
View Article and Find Full Text PDFOur previous studies demonstrated that the cell culture-grown hepatitis C virus of genotype 2a (HCVcc) uses apolipoprotein E (apoE) to mediate its attachment to the surface of human hepatoma Huh-7.5 cells. ApoE mediates HCV attachment by binding to the cell surface heparan sulfate (HS) which is covalently attached to the core proteins of proteoglycans (HSPGs).
View Article and Find Full Text PDFOur recent studies demonstrated that apolipoprotein E mediates cell attachment of hepatitis C virus (HCV) through interactions with the cell surface heparan sulfate (HS). HS is known to covalently attach to core proteins to form heparan sulfate proteoglycans (HSPGs) on the cell surface. The HSPG core proteins include the membrane-spanning syndecans (SDCs), the lycosylphosphatidylinositol-linked glypicans (GPCs), the basement membrane proteoglycan perlecan (HSPG2), and agrin.
View Article and Find Full Text PDFDuring viral infection or cellular stress, cap-dependent translation is shut down. Proteins that are synthesized under these conditions use alternative mechanisms to initiate translation. This study demonstrates that at least two alternative translation initiation routes, internal ribosome entry site (IRES) initiation and ribosome shunting, rely on ribosomal protein S25 (RPS25).
View Article and Find Full Text PDFHepatitis C virus (HCV) is able to induce autophagy via endoplasmic reticulum (ER) stress, but the exact molecular signaling pathway is not well understood. We found that the activity of the mechanistic target of rapamycin complex 1 (MTORC1) was inhibited in Huh7 cells either harboring HCV-N (genotype 1b) full-genomic replicon or infected with JFH1 (genotype 2a) virus, which led to the activation of UNC-51-like kinase 1 (ULK1) and thus to autophagy. We then analyzed activity upstream of MTORC1, and found that both protein kinase, AMP-activated, α (PRKAA, including PRKAA1 and PRKAA2, also known as AMP-activated protein kinase, AMPKα) and AKT (refers to pan AKT, including three isoforms of AKT1-3, also known as protein kinase B, PKB) were inhibited by HCV infection.
View Article and Find Full Text PDF