Publications by authors named "Guangxian Li"

Insufficient ionic conductivity, limited Li transfer number (t+), and narrow electrochemical windows have heavily restricted the actual application of PEO (poly(ethylene) oxide)-based polymer electrolytes (PEs). Herein, a novel deep eutectic solvent (DES)-based PEO PE for stabilizing high voltage lithium metal battery (LMB) is designed. The DES reduces the crystallinity of PEO while promoting the dissociation of LiTFSI to release more free Li, thus facilitating the transport of Li in the PEO matrix.

View Article and Find Full Text PDF

The swing process between the construction and destruction of hybrid nanostructures in conductive nanocomposites under an external stimulation plays a pivotal role in their sensing performance and is directly related to the nanoscale motion of the corresponding hybrid nanoparticles. When one-dimensional (1D) nanofibers and two-dimensional (2D) nanoplatelets were selectively distributed in thin cell walls supercritical CO foaming, the confined nanoscale motion of 1D nanofibers and 2D nanoplatelets in the stretching process, including hybrid nanoparticle rotation and separation, was precisely regulated based on the hybrid nanoparticles' Monte Carlo theoretical modelling. Correspondingly, an optimized complex hybrid nanostructure with a suitable nanoparticle content, hybrid ratio and geometry was proposed to achieve a high gauge factor of 4469.

View Article and Find Full Text PDF

With the advent of the information age, electromagnetic hazards are becoming more serious. In view of environmental protection, green electromagnetic interference (EMI) shielding materials with little or no secondary reflection have become the ideal choice. In this paper, by freeze-drying, high-temperature carbonization, coating and impregnation backfilling, we prepared carbonized Ni-MOF/reduced graphene oxide/silver nanowire-polyimide@polyethylene glycol composites (Ni@C/r-GO/AgNW-PI@PEG) with gradient conductivity based on impedance matching.

View Article and Find Full Text PDF

Flexible sensing systems (FSSs) designed to measure plantar pressure can deliver instantaneous feedback on human movement and posture. This feedback is crucial not only for preventing and controlling diseases associated with abnormal plantar pressures but also for optimizing athletes' postures to minimize injuries. The development of an optimal plantar pressure sensor hinges on key metrics such as a wide sensing range, high sensitivity, and long-term stability.

View Article and Find Full Text PDF

The preparation of bio-based poly(lactic acid) (PLA) foams with high mechanical properties and heat resistance is of great significance for environmental protection and green sustainable development. In this paper, D-sorbitol (DS) containing six hydroxyl groups was introduced into poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blends for first time to promote the formation of stereocomplex (SC) crystals, which could improve the foaming behavior and enhance mechanical properties and heat resistance of PLA foams. The results showed that DS could improve the formation efficiency and crystallinity of SC crystals by enhancing the hydrogen bonding between the enantiomeric molecular chains.

View Article and Find Full Text PDF

The complex hybrid nanostructure combining a two-dimensional (2D) conductive material and a hierarchical nanoscale skeleton plays an important role to enhance its piezoresistive sensitivity. To construct such a novel hybrid nanostructure, a piezoresistive sensor was designed with the following strategy to take the full advantages of 2D MXene and nanoscale fibrils: ethylene oxide propylene oxide random copolymer (EOPO) was grafted to ethylene-vinyl alcohol (EVOH) molecular chains and was foamed by an environmentally-friendly supercritical CO (scCO) foaming technology to fabricate abundant nanoscale EVOH fibrils surrounding micropores; MXene featured as a 2D structure of nanoscale size that strongly interacted with this hierarchical nanoscale skeleton, and MXene not only convolved on nanoscale fibrils to generate bumps but also MXene covered the end of broken fibrils to build spots, and furthermore, MXene adhered on the soft EOPO embedded EVOH fibrils to form wrinkles, in which these bumps, spots and wrinkles assembled by highly conductive 2D MXene offered sufficient contacts when the hierarchical nanoscale skeleton was compressed (these contacts would then destruct when the skeleton recovered). Such an elaborated hybrid nanostructural design exploits the full potential of 2D MXene and hence achieves an ultra-high sensitivity of 6895.

View Article and Find Full Text PDF

Pre-polymerized vinyl trimethoxy silane (PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization, sol-gel transition and supercritical CO drying. The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size (30-40 nm), high specific surface area (559 m g), high void fraction (91.7%) and enhanced mechanical property: (1) the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect (beneficial for infrared (IR) stealth); (2) the heterogeneous interface was beneficial for IR reflection (beneficial for IR stealth) and MWCNT polarization loss (beneficial for electromagnetic wave (EMW) attenuation); (3) the high void fraction was beneficial for enhancing thermal insulation (beneficial for IR stealth) and EMW impedance match (beneficial for EMW attenuation).

View Article and Find Full Text PDF

In this work, two imidazolium-based ionic liquids (ILs) with different cations including dications (DIL) and monocations (MIL) were blended with poly(ethylene oxide) (PEO). The influence of ILs' structure on the structural and dynamic properties of a PEO/IL system was investigated by molecular dynamics (MD) simulation and density functional theory (DFT) methods. The simulation results show that DIL exhibits weaker interaction with PEO than MIL due to a stronger IL aggregation effect.

View Article and Find Full Text PDF

Tungsten carbide is currently the most widely used tool material for machining difficult-to-machine materials, such as titanium alloys and nickel-based super alloys. In order to improve the performance of tungsten carbide tools, surface microtexturing, a novel technology that can effectively reduce cutting forces and cutting temperatures and improve wear resistance, has been applied in metalworking processes. However, when fabricating the micro-textures such as micro-grooves or micro-holes on tool surfaces, the significant decrease in material removal rate is a major obstacle.

View Article and Find Full Text PDF

Porous surfaces of materials have shown huge potentialities for endowing materials with multifarious functions. Despite introducing gas-confined-barriers in supercritical CO foaming technology is effective to weaken the gas escape effect and facilitate the preparation of porous surfaces, the differences in intrinsic properties between barriers and polymers result in bottlenecks like cell structure adjustment limitation and incompletely eliminated solid skin layers. This study undertakes a preparation approach for porous surfaces by foaming at incompletely healed polystyrene/polystyrene interfaces.

View Article and Find Full Text PDF

Titanium alloys are extensively used in various industries due to their excellent corrosion resistance and outstanding mechanical properties. However, titanium alloys are difficult to machine due to their low thermal conductivity and high chemical reactivity with tool materials. In recent years, there has been increasing interest in the use of titanium components produced by additive manufacturing (AM) for a range of high-value applications in aerospace, biomedical, and automotive industries.

View Article and Find Full Text PDF

The insufficient ionic conductivity, limited lithium-ion transference number (t +), and high interfacial impedance severely hinder the practical application of quasi-solid polymer electrolytes (QSPEs). Here, a sandwich-structured polyacrylonitrile (PAN) based QSPE is constructedin which MXene-SiO nanosheets act as a functional filler to facilitate the rapid transfer of lithium-ion in the QSPE, and a polymer and plastic crystalline electrolyte (PPCE) interface modification layer is coated on the surface of the PAN-based QSPE of 3 wt.% MXene-SiO (SS-PPCE/PAN-3%) to reduce interfacial impedance.

View Article and Find Full Text PDF

It has been a great challenge to prepare high-expansion-ratio polylactide (PLA) foam with eminent thermal insulation and compression performance in packaging field. Herein, a naturally formed nanofiller halloysite nanotube (HNT) and stereocomplex (SC) crystallites were introduced into PLA with a supercritical CO foaming method to improve foaming behavior and physical properties. The compressive performance and thermal insulation properties of the obtained poly(L-lactic acid) (PLLA)/poly(D-lactic acid) (PDLA)/HNT composite foams were successfully investigated.

View Article and Find Full Text PDF

Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice.

View Article and Find Full Text PDF

Imidazolium ionic liquids (ILs) with various alkyl chain lengths on the cations ([Cmim], = 2, 4 and 8) and different combined anions ([TFSI] and [PF]) were blended with poly(methyl methacrylate) (PMMA), and the effects of the IL structure on the chain dynamics of PMMA were experimentally investigated by rheology and DSC measurements combined with a simulation method. The results indicate that the interaction between PMMA and ILs becomes stronger as the alkyl chain length on the imidazolium ring increases or the anion changes from [PF] to [TFSI]. As a result, a higher critical entanglement concentration and a larger entanglement molecular weight of PMMA were found in [Cmim][TFSI] due to the stiffer conformation.

View Article and Find Full Text PDF

The deformation mechanism and phase transition behavior of polytetrafluoroethylene (PTFE) under stretching conditions (25, 50, 100 °C) were investigated by using differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), and X-ray diffraction (XRD). Compared to the unstretched PTFE samples, stretching at all temperatures results in a reduced phase transition temperature (IV-I and II-IV). Above a critical strain (∼0.

View Article and Find Full Text PDF

Nanocomposite foam with a large expansion ratio and thin cell walls is promising for electromagnetic interference (EMI) shielding materials, due to the low electromagnetic (EM) reflection and high EM absorption. To overcome the dimensional limitation from two-dimension (2D) thin walls on the construction of conductive network, a strategy combining hybrid conductive nanofillers in semi-crystalline matrix together with supercritical CO (scCO) foaming was applied: (1) one-dimension (1D) CNTs with moderate aspect ratio was used to minimize the dimensional confinement from 2D thin walls while constructing the main EM absorbing network; (2) zero-dimension (0D) carbon black (CB) with no dimensional confinement was used to connect the separated CNTs in thin walls and to expand the EM absorbing network; (3) scCO foaming was applied to obtain a cellular structure with multi-layer thin walls and a large amount of air cells to reduce the reflected EM; (4) semi-crystalline polymer was selected so that the rheological behavior could be adjusted by optimizing crystallization and filler content to regulate the cellular structure. Consequently, an advanced material featured as lightweight, high EM absorption and low EM reflection was obtained at 0.

View Article and Find Full Text PDF

Long chain branching (LCB) structures are efficiently introduced into polylactide (PLA) by employing sustainable soybean oil (SO) under the initiation of trace amount of cyclic peroxide, which displays robust foamability and heat resistance. It is discovered that with the introduction of 0.6 wt% SO, the expansion ratio and Vicat softening temperature of LCB PLA are sharply raised to 75.

View Article and Find Full Text PDF

MicroRNAs are important regulators in plant developmental processes and stress responses. In this study, we generated a series of maize STTM166 transgenic plants. Knock-down of miR166 resulted in various morphological changes, including rolled leaves, enhanced abiotic stress resistance, inferior yield-related traits, vascular pattern and epidermis structures, tassel architecture, as well as abscisic acid (ABA) level elevation and indole acetic acid (IAA) level reduction in maize.

View Article and Find Full Text PDF

The spatiotemporal organization of complex fluids under flow can be strongly affected by incorporating solid particles. Here, we report that a monolayer of interfacially active microspheres preferentially wetted by the matrix phase can bridge droplets into vorticity-aligned bands in immiscible polymer blends at intermediate particle concentrations and low shear rates. Strong particle bridging ability and the formation of rigid anisotropic droplet bands with a negligible inertia effect in the Newtonian matrix are suggested to be responsible for the vorticity orientation of droplet bands during slow shear flow, which could be understood based on Jeffery orbit theory in the framework of fluid mechanics and strong confinement effect acted by shear walls and adjacent bands.

View Article and Find Full Text PDF

In this study, a novel finishing method, entitled clustered magnetorheological finish (CMRF), was proposed to improve surface finish of the silicon nitride ( Si 3 N 4 ) balls with ultra fine precision. The effects of different polishing parameters including rotation speeds, eccentricities and the machining gaps on surface finish of Si 3 N 4 balls were investigated by analyzing the roughness, sphericity and the micro morphology of the machined surface. The experimental results showed that the polishing parameters significantly influenced the surface finish.

View Article and Find Full Text PDF

Poly(ionic liquid) (PIL), integrating the characteristics of both polymers and ionic liquid, is synthesized and employed to modify diglycidyl-4,5-epoxy-cyclohexane-1,2-dicarboxylate (TDE-85). With the addition of PIL, the fracture toughness, and thermal and dielectric performances of TDE-85 were discovered to be simultaneously improved, meanwhile the tensile modulus and strength is increased. Upon an optimal loading of 3 wt% PIL, the critical stress intensity factor ( ), tensile modulus and strength are raised by 92.

View Article and Find Full Text PDF

The delicate flow-induced morphology of immiscible polypropylene/polystyrene blends in the presence of silica nanoparticles (NPs) is investigated in a multiparameter space. The morphology map constructed based on in situ morphology observation reveals that a critical ratio of NP concentration to droplet concentration, which strongly depends on the NP surface chemistries and the ratio of the NP concentration to the droplet concentration, exists. Below or above the critical ratio, the NPs display diverse effects on the morphology (promote or suppress droplet coalescence).

View Article and Find Full Text PDF

Flexible reactive poly(glycidyl methacrylate)--poly(propylene glycol)--poly(glycidyl methacrylate) (GPG) and nonreactive poly(ethylene glycol)--poly(propylene glycol)--poly(ethylene glycol) (EPE80) were utilized to toughen a trifunctional epoxy (diglycidyl 4, 5-epoxycyclohexane-1, 2-dicarboxylate, TDE-85). In comparison with the nonreactive EPE80 and reactive GPG92 with long reactive blocks ( ), the incorporation of reactive GPG83 with short improved the comprehensive mechanical properties of the epoxy. Upon an optimal GPG83 loading of 2.

View Article and Find Full Text PDF