Soil salinization poses a critical challenge to global food security, impacting plant growth, development, and crop yield. This study investigates the efficacy of deep learning techniques alongside chlorophyll fluorescence (ChlF) imaging technology for discerning varying levels of salt stress in soybean seedlings. Traditional methods for stress identification in plants are often laborious and time-intensive, prompting the exploration of more efficient approaches.
View Article and Find Full Text PDFThe analysis of plant phenotype parameters is closely related to breeding, so plant phenotype research has strong practical significance. This paper used deep learning to classify from the macro (plant) to the micro level (organelle). First, the multi-output model identifies Arabidopsis accession lines and regression to predict Arabidopsis's 22-day growth status.
View Article and Find Full Text PDFThe accurate identification and classification of soybean mutant lines is essential for developing new plant varieties through mutation breeding. However, most existing studies have focused on the classification of soybean varieties. Distinguishing mutant lines solely by their seeds can be challenging due to their high genetic similarities.
View Article and Find Full Text PDFRoot lodging poses a major threat to maize production, resulting in reduced grain yield and quality, and increased harvest costs. Here, we combined expressional, genetic, and cytological studies to demonstrate a role of ZmYUC2 and ZmYUC4 in regulating gravitropic response of the brace root and lodging resistance in maize. We show that both ZmYUC2 and ZmYUC4 are preferentially expressed in root tips with partially overlapping expression patterns, and the protein products of ZmYUC2 and ZmYUC4 are localized in the cytoplasm and endoplasmic reticulum, respectively.
View Article and Find Full Text PDFMaize (Zea mays) originated in southern Mexico and has spread over a wide latitudinal range. Maize expansion from tropical to temperate regions has necessitated a reduction of its photoperiod sensitivity. In this study, we cloned a quantitative trait locus (QTL) regulating flowering time in maize and show that the maize ortholog of Arabidopsis thaliana EARLY FLOWERING3, ZmELF3.
View Article and Find Full Text PDFStrigolactones (SLs) are a recently identified class of phytohormones that regulate diverse developmental processes in land plants. However, the signaling mechanism of SLs in maize (Zea mays) remains largely unexplored. Here, we identified the maize gene DWARF 53 (ZmD53) and demonstrated that ZmD53 interacts with the SL receptors DWARF 14A/B (ZmD14A/B) in a rac-GR24-dependent manner.
View Article and Find Full Text PDFMaize is a major staple crop widely used for food, feedstocks and industrial products. Shade-avoidance syndrome (SAS), which is triggered when plants sense competition of light from neighbouring vegetation, is detrimental for maize yield production under high-density planting conditions. Previous studies have shown that the red and far-red photoreceptor phytochromes are responsible for perceiving the shading signals and triggering SAS in Arabidopsis; however, their roles in maize are less clear.
View Article and Find Full Text PDFSince the development of single-hybrid maize breeding programs in the first half of the twentieth century, maize yields have increased over sevenfold, and much of that increase can be attributed to tolerance of increased planting density. To explore the genomic basis underlying the dramatic yield increase in maize, we conducted a comprehensive analysis of the genomic and phenotypic changes associated with modern maize breeding through chronological sampling of 350 elite inbred lines representing multiple eras of germplasm from both China and the United States. We document several convergent phenotypic changes in both countries.
View Article and Find Full Text PDFIncreasing planting density has been an effective means of increasing maize ( ssp. ) yield per unit of land area over the past few decades. However, high-density planting will cause a reduction in the ratio of red to far-red incident light, which could trigger the shade avoidance syndrome and reduce yield.
View Article and Find Full Text PDFPlants have evolved a repertoire of strategies collectively termed the shade-avoidance syndrome to avoid shade from canopy and compete for light with their neighbors. However, the signaling mechanism governing the adaptive changes of adult plant architecture to shade is not well understood. Here, we show that in Arabidopsis, compared with the wild type, several PHYTOCHROME-INTERACTING FACTORS (PIFS) overexpressors all display constitutive shade-avoidance syndrome under normal high red to far-red light ratio conditions but are less sensitive to the simulated shade, whereas the MIR156 overexpressors exhibit an opposite phenotype.
View Article and Find Full Text PDFBackground: Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops.
Results: In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively.
The vacuolar Na(+)/H(+) antiporter plays an important role in maintaining ionic homeostasis and the osmotic balance of the cell with the environment by sequestering excessive cytoplasmic Na(+) into the vacuole. However, the relatively low Na(+)/H(+) exchange efficiency of the identified Na(+)/H(+) antiporter could limit its application in the molecular breeding of salt tolerant crops. In this study, DNA family shuffling was used to create chimeric Na(+)/H(+) antiporters with improved transport activity.
View Article and Find Full Text PDFBiotechnol Appl Biochem
October 2016
Carotenoids are key precursor for aroma compounds in plants. Although the fruit of Lycium chinense contains numerous carotenoids, the formation mechanism of aroma compounds in L. chinense is still poorly understood.
View Article and Find Full Text PDFPlant vacuolar Na(+)/H(+) antiporters play important roles in cellular ion homeostasis,vacuolar pH regulation and sequestration of Na(+) ions into the vacuole. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na(+)/H(+) transporting activity. In this study, we truncated the hydrophilic C terminus of a vacuolar Na(+) /H(+) antiporter gene from Salicornia europaea (SeNHX1) to generate its derivative, SeNHX1-ΔC.
View Article and Find Full Text PDFTo evaluate the physiological importance of cytosolic ascorbate peroxidase (APX) in the reactive oxygen species (ROS)-scavenging system, a full-length cDNA clone, named LmAPX, encoding a cytosolic ascorbate peroxidase was isolated from Lycium chinense Mill. using homologous cloning, then the expression of LmAPX under salt stress was investigated. After sequencing and related analysis, the LmAPX cDNA sequence was 965 bp in length and had an open reading frame (ORF) of 750 bp coding for 250 amino acids.
View Article and Find Full Text PDFLycium barbarum contains high levels of zeaxanthin, which is produced by the conversion of β-carotene into zeaxanthin. β-Carotene hydroxylase catalyzes this reaction. We cloned a cDNA (chyb) encoding β-carotene hydroxylase (Chyb) from the L.
View Article and Find Full Text PDFA novel flat grille membrane module using inorganic glass fibers as filter media is proposed for use in a membrane bioreactor for wastewater treatment. A model which integrates the concepts of back transport velocity, spatial local critical flux and temporal variation of the local flux has been developed. The membrane module was optimized based on experimental results and calculations using the model.
View Article and Find Full Text PDFA novel grille form complex membrane module composed of glass fiber covered with organic membrane and the dynamic membrane bioreactor (DMBR) with this complex membrane were studied. The results showed that the flux of the dynamic membrane of glass fiber tube without covering with organic membrane solution was only 4 L/(m2 x h) at a trans-membrane pressure (TMP) of 0.02 MPa.
View Article and Find Full Text PDFIn this article, alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin, starch, acrylamide, and acrylic acid). Its practical application effect and environmental safety were studied. The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants.
View Article and Find Full Text PDFThe traditional Chinese medicine Oenanthe javanica (OJ) has been used for many years, mainly for the treatment of inflammatory conditions including hepatitis. In this study, human hepatoma Hep G2.2.
View Article and Find Full Text PDFBy dynamic method under UV irradiation, commercial melt-blown polypropylene (PPMB) filter element was modified with acrylamide (AAm) using benzophenone (BP) as initiator. Attenuated total reflection-Fourier transform infrared spectroscopy and scanning electron microscope verified that polyacrylamide chain was grafted on the fiber surface of PPMB filter element. Elemental content analysis with energy dispersive X-ray of fibers revealed that the polymerization content in the inner part of filter element was relatively higher than that in the outer.
View Article and Find Full Text PDFUsing the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carrier and the other employed unmodified membrane segment as biofilm carrier.
View Article and Find Full Text PDFJ Environ Sci (China)
November 2007
Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.
View Article and Find Full Text PDFAim: To assess the anti-hepatitis B virus (HBV) effect of hyperoside extracted from Abelmoschus manihot (L) medik.
Methods: The human hepatoma Hep G2.2.