Publications by authors named "Guangxia Shen"

Imaging mass cytometry (IMC) permits high-dimensional single-cell spatial proteomics by harnessing mass tags to replace conventional fluorescence tags. However, the current IMC technique commonly adopts metal-chelated polymer (MCP) tags, which are limited in sensitivity, multiplicity and data acquisition speed. Here, we demonstrate nanometal-organic framework (NMOF) tags, which could concurrently augment IMC's sensitivity, multiplicity, and acquisition speed.

View Article and Find Full Text PDF

An effective tool to assess embryo quality in the assisted reproduction clinical practice will enhance successful implantation rates and mitigate high risks of multiple pregnancies. Potential biomarkers secreted into culture medium (CM) during embryo development enable rapid and noninvasive methods of assessing embryo quality. However, small volumes, low biomolecule concentrations, and impurity interference collectively preclude the identification of quality-related biomarkers in single blastocyst CM.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicles (EVs) carry tumor-specific proteins and RNAs, thus becoming prevalent targets for early cancer diagnosis. However, low expression of EV cargos and insufficient diagnostic power of individual biomarkers hindered EVs application in clinical practice. Herein, we propose a multiplex Codetection platform of proteins and RNAs (Co-PAR) for EVs.

View Article and Find Full Text PDF

Extracellular vesicle (EV) surface proteins, expressed by primary tumours, are important biomarkers for early cancer diagnosis. However, the detection of these EV proteins is complicated by their low abundance and interference from non-EV components in clinical samples. Herein, we present a MEmbrane-Specific Separation and two-step Cascade AmpLificatioN (MESS2CAN) strategy for direct detection of EV surface proteins within 4 h.

View Article and Find Full Text PDF

Superresolution microscopy enables probing of cellular ultrastructures. However, its widespread applications are limited by the need for expensive machinery, specific hardware, and sophisticated data processing. Expansion microscopy (ExM) improves the resolution of conventional microscopy by physically expanding biological specimens before imaging and currently provides ~70-nm resolution, which still lags behind that of modern superresolution microscopy (~30 nm).

View Article and Find Full Text PDF

Co-detection of multiplex cancer subtypes and bacteria subtypes in situ is crucial for understanding tumor microbiome interactions in tumor microenvironment. Current standard techniques such as immunohistochemical staining and immunofluorescence staining are limited for their multiplicity. Simultaneously visualizing detailed cell subtypes and bacteria distribution across the same pathological section remains a major technical challenge.

View Article and Find Full Text PDF

Phosphomolybdate-based nanoparticles (PMo-based NPs) have been commonly applied in nanomedicine. However, upon contact with biofluids, proteins are quickly adsorbed onto the NPs surface to form a protein corona, which induces the opsonization and facilitates the rapid clearance of the NPs by macrophage uptake. Herein, we introduce a family of structurally homologous PMo-based NPs (CDS-PMo@PVP(x = 0 ~ 1) NPs) capping diverse content of zwitterionic polymer poly (N-vinylpyrrolidone) (PVP) to regulate the protein corona formation on PMo-based NPs.

View Article and Find Full Text PDF

Due to the global overuse of antibiotics, the issue of multidrug-resistant bacteria (MDR) continuously calls for effective strategies to tackle the antibiotic resistance crisis. Here, we develop a silver nanomaterial with a petal-like structure (namely Ag Nano Flowers, AgNFs). AgNFs are synthesized in an eco-friendly way with bovine serum albumin as an assisting template and stabilizing agent under mild conditions.

View Article and Find Full Text PDF

High-dimensional imaging mass cytometry (IMC) enables simultaneous quantification of over 35 biomarkers on one tissue section. However, its limited resolution and ultralow acquisition speed remain major issues for general clinical application. Meanwhile, conventional immunofluorescence microscopy (IFM) allows sub-micrometer resolution and rapid identification of the region of interest (ROI), but only operates with low multiplicity.

View Article and Find Full Text PDF

Pancreatic cancer, at unresectable advanced stages, presents poor prognoses, which could be prevented by early pancreatic cancer diagnosis methods. Recently, a promising early-stage pancreatic cancer biomarker, extracellular vesicles (EVs) related glypican-1 (GPC1) mRNA, is found to overexpress in pancreatic cancer cells. Current mRNA detection methods usually require expensive machinery, strict preservation environments, and time-consuming processes to guarantee detection sensitivity, specificity, and stability.

View Article and Find Full Text PDF

Mass cytometry, also called cytometry by time-of-flight (CyTOF), is an emerging powerful proteomic analysis technique that utilizes metal chelated polymer (MCP) as mass tags for interrogating high-dimensional biomarkers simultaneously on millions of individual cells. However, under the typical polymer-based mass tag system, the sensitivity and multiplexing detection ability has been highly restricted. Herein, a new structure mass tag based on a nanometal organic framework (NMOF) is reported for multiparameter and sensitive single-cell biomarker interrogating in CyTOF.

View Article and Find Full Text PDF

Uveal melanoma (UM) is the most common intraocular malignant tumor in adults and has a low survival rate following metastasis; it is derived from melanocytes susceptible to reactive oxygen species (ROS). Carbon dot (Cdot) nanoparticles are a promising tool in cancer detection and therapy due to their unique photophysical properties, low cytotoxicity, and efficient ROS productivity. However, the effects of Cdots on tumor metabolism and growth are not well characterized.

View Article and Find Full Text PDF

Due to the excessive use of fungicides, pesticide residues have become a growing concern in recent years. Herein, we demonstrated an easy-prepared and low-cost surface enhanced Raman Scattering (SERS) chip composed of 3D silver microspheres (AgMSs) pattern for the quantitative testing of carbendazim in Chinese tea. Compared with the common monolayer SERS substrate, the 3D patterns formed by self-assembly AgMSs with fine nanostructure can offer much more aggregation-induced hotspots and generate strong 3D synergetic effects.

View Article and Find Full Text PDF

Mass cytometry (CyTOF) is a critical cell profiling tool in acquiring multiparameter proteome data at the single-cell level. A major challenge in CyTOF analysis is sample-to-sample variance arising from the pipetting process, staining variation, and instrument sensitivity. To reduce such variations, cell barcoding strategies that enable the combination of individual samples prior to antibody staining and data acquisition on CyTOF are often utilized.

View Article and Find Full Text PDF

A rapid and fast detection of trace amounts of melamine in milk is reported by using Gold Nano Spheres embedded monolith conjugates. Monolith was synthesized by the polymerization of Glycidyl Methacrylate (GMA) and Ethylene Dimethacrylate(EDMA) (cross linker and functional monomer), Cyclohexanol (Porogen formation) and 2, 2-Dimethoxy-2-phenyl-acetophenone (photo-initiator) on gold coated silicon wafer. In order to gauge the influence of monolith on SERS signal activity, three shapes of gold nanoparticles namely Gold Nano Spheres (GNSs), Gold Nanorods (GNRs) and Triangular Gold Nanoprisms (GNPrs) were immobilized on monolithic surface and analyzed by the signal molecule Rhodamine (R6G).

View Article and Find Full Text PDF

Exosomes play an important role in numerous cellular processes. Fundamental study and practical use of exosomes are significantly constrained by the lack of analytical tools capable of physical and biochemical characterization. In this paper, we present an optical approach capable of imaging single exosomes in a label-free manner, using interferometric plasmonic microscopy.

View Article and Find Full Text PDF

Due to the dual role as an electron acceptor and an electron donor in solution, carbon dots (Cdots) have broad applications in environmental analysis, biological detection, and biosensors. Herein, we report a facile-green strategy for a large-scale synthesis of fluorescent N, P-doped carbon dots (N, P-Cdots) with an absolute quantum yield of 66.08% by a simple one-step thermal decomposition.

View Article and Find Full Text PDF

Carbon dots, as a potential substitute for semiconductor quantum dots, have drawn great interest in recent years. The preparation of fluorescent carbon dots has been made easy with many significant advances, but the complicated purifying processes, low quantum yield, and blue emission wavelength still limit its wider application in biosensors, biomedicine, and photonic devices. Here we report a strategy to synthesis Gd-doped carbon dots (Gd-Cdots) of super-high quantum yield with a microwave assisted hydrothermal method.

View Article and Find Full Text PDF

Portable Polymerase Chain Reaction (PCR) devices combined with microfluidic chips or lateral flow stripes have shown great potential in the field of point-of-need testing (PoNT) as they only require a small volume of patient sample and are capable of presenting results in a short time. However, the detection for multiple targets in this field leaves much to be desired. Herein, we introduce a novel PCR platform by integrating a bottom-well microfluidic chip with an infra-red (IR) excited temperature control method and fluorescence co-detection of three PCR products.

View Article and Find Full Text PDF

Exosomes are nano-vesicles that contribute to the effectiveness of many treatments. The aim of this study was to identify profiles of microRNA (miRNA) contained in serum exosomes that are differentially regulated in patients with prostate cancer undergoing carbon ion radiotherapy (CIRT). RNA was extracted from serum exosomes of eight patients with localized prostate cancer before and after CIRT, and miRNA was analyzed by the next generation sequencing.

View Article and Find Full Text PDF

Quantum dots-labeled urea-enzyme antibody-based rapid immunochromatographic test strips have been developed as quantitative fluorescence point-of-care tests (POCTs) to detect helicobacter pylori. Presented in this study is a new test strip reader designed to run on tablet personal computers (PCs), which is portable for outdoor detection even without an alternating current (AC) power supply. A Wi-Fi module was integrated into the reader to improve its portability.

View Article and Find Full Text PDF

In this study, using chemically reduced graphene oxide (GO) as a model nanocarbon, we successfully developed a facile surface-functionalization strategy of nanocarbons to allow both biocompatibility and receptor targeted drug delivery. Polyvinylpyrrolidone (PVP) coating improves aqueous dispersibility and biocompatibility of GO, and provides anchoring sites for ACDCRGDCFCG peptide (RGD4C). Aromatic photosensitizer chlorin e6 (Ce6) can be effectively loaded into the rGO-PVP-RGD system via hydrophobic interactions and π-π stacking.

View Article and Find Full Text PDF

Background: Fluorescent carbon dots (Cdots) have attracted increasing attention due to their potential applications in sensing, catalysis, and biomedicine. Currently, intensive research has been concentrated on the synthesis and imaging-guided therapy of these benign photoluminescent materials. Meanwhile, Cdots have been explored as nonviral vector for nucleic acid or drug delivery by chemical modification on purpose.

View Article and Find Full Text PDF

Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation.

View Article and Find Full Text PDF

A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure.

View Article and Find Full Text PDF