Hydroxyl radicals (OH) play a significant role in contaminant transformation and element cycling during redox fluctuations in paddy soil. However, these important processes might be affected by widely used agricultural amendments, such as urea, pig manure, and biochar, which have rarely been explored, especially regarding their impact on soil aggregates and associated biogeochemical processes. Herein, based on five years of fertilization experiments in the field, we found that agricultural amendments, especially coapplication of fertilizers and biochar, significantly increased soil organic carbon contents and the abundances of iron (Fe)-reducing bacteria.
View Article and Find Full Text PDFDesigning advanced electrode materials that can be reliably cycled at high temperatures and used for assembling advanced energy storage devices remain a major challenge. As a representative of novel wide bandgap semiconductors, silicon carbide (SiC) single crystals have broad prospects in high-temperature energy storage due to their excellent characteristics such as low thermal expansion coefficient, high temperature radiation resistance and stable chemical properties. In this work, an N-type SiC single-crystal material with a high-density porous structure was successfully designed and prepared by using an improved electrochemical anodic oxidation strategy.
View Article and Find Full Text PDFObjective: The purpose of the study was to investigate the expression levels and correlation of inflammatory factors such as miR-377-3p and TGF-β in patients with diabetic kidney disease (DKD), and to investigate the regulatory mechanism of transfection of miR-377-3p on the inflammatory response of HK-2 cell induced by high glucose.
Methods: According to UACR, patients were divided into normal albuminuria group (Con, n = 29), microalbuminuria group (Micro, n = 31) and macroalbuminuria group (Macro, n = 30), analyzed the correlation and influencing factors between DKD and inflammatory factor. HK-2 cells were randomly divided into four groups: normal control group (NC), high glucose group (HG), miR-377-3p overexpression group (MIN), and miR-377-3p inhibition group (IN).
Objective: The value of novel biomarkers for DKD has received increasing attention, and there is an urgent need for novel biomarkers with sensitivity, specificity and ability to detect kidney damage.miR-377 regulates many basic biological processes, plays a key role in tumor cell proliferation, migration and inflammation, and can also increase the expression of matrix proteins and fibronectin, leading to renal tubulointerstitial inflammation and renal fibrosis. Lipoprotein-associated phospholipase A2, as an inflammatory marker, is involved in the pathological process of microalbuminuria production and renal function decline, and is a predictive factor of microalbuminuria production and renal function decline, and can be used as an indicator to evaluate the progression of DKD.
View Article and Find Full Text PDFThere is growing evidence for the potential of biochars (BCs) in remediating mercury-contaminated paddy soils, but the high doses commonly used in laboratory studies discourage BC application in practice. To address these difficulties, we compared the effects of varying amounts of BCs from different sources on the formation of methylmercury (MeHg) in soil and its accumulation in rice through microcosm and pot experiments. The addition of a wide range of added doses (0.
View Article and Find Full Text PDFIL-17 and other cytokines have a number of immunomodulatory effects on thyroid cells. The present study investigated the changes and correlations amongst IL-17, NF-κB, IL-6, IL-10, interferon-γ (IFN-γ), TNF-α, IL-2 and IL-4 in patients with different autoimmune thyroid diseases in order to further clarify the pathogenesis of autoimmune thyroid disease. A total of 82 patients with autoimmune thyroid diseases (41 with Graves' disease and 41 with Hashimoto's thyroiditis) and 53 healthy controls were enrolled.
View Article and Find Full Text PDFMedicine (Baltimore)
October 2022
Micromachines (Basel)
September 2022
The impact of liquid drops on superhydrophobic solid surfaces is ubiquitous and of practical importance in many industrial processes. Here, we study the impingement of droplets on superhydrophobic surfaces with a macroscopic dimple structure, during which the droplet exhibits asymmetric jetting. Systematic experimental investigations and numerical simulations provide insight into the dynamics and underlying mechanisms of the observed phenomenon.
View Article and Find Full Text PDFMany studies have examined the redox behavior of ferrous ions (Fe(II)) sorbed to mineral surfaces. However, the associated hydroxyl radical (OH) formation during Fe(II) oxidation by O was rarely investigated at circumneutral pH. Therefore, we examined OH formation during oxygenation of adsorbed Fe(II) (Fe(II)) on common minerals.
View Article and Find Full Text PDFMicrofluidic technology has been highly useful in nanovolume sample preparation, separation, synthesis, purification, detection and assay, which are advantageous in drug development. This review highlights the recent developments and trends in microfluidic applications in two areas of drug development. First, we focus on how microfluidics has been developed as a facile tool for the fabrication of drug carriers including microparticles and nanoparticles.
View Article and Find Full Text PDFObjectives: Some of community mitigation efforts on COVID-19 created challenges to ongoing public health programs, including HIV care and prevention services among men who have sex with men (MSM). The goal of the current study was to explore sociodemographic factors and the impact of COVID-19 on HIV testing among Chinese MSM during state-enforced quarantine.
Methods: We conducted a community based survey between May 1st to June 30th, 2020 on COVID-19 related impacts on HIV testing among 436 China MSM during the COVID-19 state-enforced quarantine.
Iron (Fe) phases are tightly linked to the preservation rather than the loss of organic carbon (OC) in soil; however, during redox fluctuations, OC may be lost due to Fe phase-mediated abiotic processes. This study examined the role of Fe phases in driving hydroxyl radical (OH) formation and OC transformation during redox cycles in paddy soils. Chemical probes, sequential extraction, and Mössbauer analyses showed that the active Fe species, such as exchangeable and surface-bound Fe and Fe in low-crystalline minerals (e.
View Article and Find Full Text PDFThe frequently occurring redox fluctuations in paddy soil are critical to the cycling of redox-sensitive elements (e.g., iron (Fe) and carbon) due to the driving of microbial processes.
View Article and Find Full Text PDFBull Environ Contam Toxicol
October 2021
Microplastics (MPs) can pose ecological risk to the environment and have the potential to negatively affect human health, raising serious public concerns. It is recognized that MPs could act as a vector for various environmental pollutants including heavy metals and potentially influencing their mobility, fate, and bioavailabilty in the environment. However, knowledge on the mechanisms underpinning the interaction processes between MPs and heavy metals is far from clear.
View Article and Find Full Text PDFBull Environ Contam Toxicol
October 2021
Microplastics (MPs) as a ubiquitous environmental pollutant have drawn growing attention, and it is concerning that children are more sensitive to MPs than adults. Unfortunately, information about the link between children and MPs is insufficient. Therefore, we review the sources and exposure routes of children to MPs and collect evidence for the potential risks.
View Article and Find Full Text PDFThe present study was conducted to estimate the effects of dietary carbohydrates on muscle quality and the underlying mechanisms. Six isonitrogenous and isolipidic diets were formulated to contain graded levels of carbohydrates (0%, 8%, 12%, 16%, 20% and 24%, respectively). These diets were named as C0, C8, C12, C16, C20 and C24, respectively.
View Article and Find Full Text PDFAdvances in tissue engineering (TE) have revealed that porosity architectures, such as pore shape, pore size and pore interconnectivity are the key morphological properties of scaffolds. Well-ordered porous polymer scaffolds, which have uniform pore size, regular geometric shape, high porosity and good pore interconnectivity, facilitate the loading and distribution of active biomolecules, as well as cell adhesion, proliferation and migration. However, these are difficult to prepare by traditional methods and the existing well-ordered porous scaffold preparation methods require expensive experimental equipment or cumbersome preparation steps.
View Article and Find Full Text PDFHeterogeneously activated peroxymonosulfate (PMS)-based advanced oxidation technologies (AOTs) have received increasing attention in contaminated water remediation. However, PMS activation by reduced clay minerals (e.g.
View Article and Find Full Text PDFSmectite clays are widely found in subsurface soils and waters. Although they strongly sequester tetracyclines (TCs), little is known about their reactions with these antibiotics under dark anoxic conditions. This study investigated the interactions between TCs and Fe-bearing smectite clays and the influences of environmental factors.
View Article and Find Full Text PDFThere are global concerns about heavy metal (HM) contamination in soils, which in turn has produced an increased demand for soil remediation. Biochar has been widely documented to effectively immobilize metals in contaminated soils and has received increasing attention for use in soil remediation. Here, we review recent progresses in understanding metal-biochar interactions in soils, potential risks associated with biochar amendment, and application of biochar in soil remediation in China.
View Article and Find Full Text PDFForkhead box O1 (foxo1) is a transcription factor and plays important roles in glucose metabolism. In the present study, foxo1 in turbot Scophthalmus maximus was cloned and characterized. The siRNA of foxo1 was used to investigate the functions of foxo1 in turbot hepatocytes glucose metabolism.
View Article and Find Full Text PDFExtracellular polymeric substances (EPS), chars and persistent organic pollutants (POPs) frequently coexist in the environment. However, a knowledge gap exists regarding their interactions. Therefore, we applied 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) as a model POP to investigate the influence of bovine serum albumin (BSA) and sodium alginate (SA) - representing protein and polysaccharide components of EPS - on POP adsorption to biochars.
View Article and Find Full Text PDFThe natural formation of hydroxyl radicals (OH) is important for the attenuation of organic contaminants. In this study, seven model polyphenols were selected to react with four types of smectite clays with varied Fe contents in the presence of HO. Diethyl phthalate (DEP) was selected as a model organic contaminant due to its wide distribution in environment.
View Article and Find Full Text PDFCarnivorous fish is thought to be high-glucose intolerance. But the reasons were still unclear. The aim of the present study is to investigate the effects of high level of dietary carbohydrate on the survival, growth and immune responses of Paralichthys olivaceus, and the underlying molecular mechanism related to the immune and glucose metabolism.
View Article and Find Full Text PDF