The two-electron oxygen reduction reaction (2e-ORR) can be exploited for green production of hydrogen peroxide (HO), but it still suffers from low selectivity in an acidic electrolyte when using non-noble metal catalysts. Here, inspired by biology, we demonstrate a strategy that exploits the micellization of surfactant molecules to promote the HO selectivity of a low-cost carbon black catalyst in strong acid electrolytes. The surfactants near the electrode surface increase the oxygen solubility and transportation, and they provide a shielding effect that displaces protons from the electric double layer (EDL).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Electrochemical pH-swing strategies offer a promising avenue for cost-effective and energy-efficient carbon dioxide (CO) capture, surpassing the traditional thermally activated processes and humidity-sensitive techniques. The concept of elevating seawater's alkalinity for scalable CO capture without introducing additional chemical as reactant is particularly intriguing due to its minimal environmental impact. However, current commercial plants like chlor-alkali process or water electrolysis demand high thermodynamic voltages of 2.
View Article and Find Full Text PDFThe intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands.
View Article and Find Full Text PDFMetabolic abnormalities are at the center of many diseases, and the capability to film and quantify the metabolic activities of a single cell is important for understanding the heterogeneities in these abnormalities. In this paper, a functional plasmonic microscope (FPM) is used to image and measure metabolic activities without fluorescent labels at a single-cell level. The FPM can accurately image and quantify the subnanometer membrane fluctuations with a spatial resolution of 0.
View Article and Find Full Text PDFThe understanding of lithium (Li) nucleation and growth is important to design better electrodes for high-performance batteries. However, the study of Li nucleation process is still limited because of the lack of imaging tools that can provide information of the entire dynamic process. We developed and used an operando reflection interference microscope (RIM) that enables real-time imaging and tracking the Li nucleation dynamics at a single nanoparticle level.
View Article and Find Full Text PDFExposure to artificial light at night (LAN) can induce obesity, depressive disorder and osteoporosis, but the pernicious effects of excessive LAN exposure on tissue structure are poorly understood. Here, we demonstrated that artificial LAN can impair developmental growth plate cartilage extracellular matrix (ECM) formation and cause endoplasmic reticulum (ER) dilation, which in turn compromises bone formation. Excessive LAN exposure induces downregulation of the core circadian clock protein BMAL1, which leads to collagen accumulation in the ER.
View Article and Find Full Text PDFThe quality of the solid-electrolyte interphase is crucial for the performance of most battery chemistries, but its formation dynamics during operation are not well understood due to a lack of reliable operando characterization techniques. Herein, we report a dynamic, non-invasive, operando reflection interference microscope to enable the real-time imaging of the solid-electrolyte interphase during its formation and evolution processes with high sensitivity. The stratified structure of the solid-electrolyte interphase formed during four distinct steps includes the emergence of a permanent inner inorganic layer enriched in LiF, a transient assembly of an interfacial electrified double layer and a consequent emergence of a temporary outer organic-rich layer whose presence is reversible with electrochemical cycling.
View Article and Find Full Text PDFAqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear.
View Article and Find Full Text PDFThe oral and maxillofacial organs play vital roles in chewing, maintaining facial beauty, and speaking. Almost all physiological processes display circadian rhythms that are driven by the circadian clock, allowing organisms to adapt to the changing environment. In recent years, increasing evidence has shown that the circadian clock system participates in oral and maxillofacial physiological and pathological processes, such as jaw and tooth development, salivary gland function, craniofacial malformations, oral carcinoma and other diseases.
View Article and Find Full Text PDFAtherosclerosis (AS), one of the most common types of cardiovascular disease, has initially been attributed to the accumulation of fats and fibrous materials. However, more and more researchers regarded it as a chronic inflammatory disease nowadays. Infective disease, such as periodontitis, is related to the risk of atherosclerosis.
View Article and Find Full Text PDFMetabolism is one of the most complex cellular biochemical reactions, providing energy and substances for basic activities such as cell growth and proliferation. Early studies have shown that glucose is an important nutrient in osteoblasts. In addition, amino acid metabolism and fat metabolism also play important roles in bone reconstruction.
View Article and Find Full Text PDFElectrochemical impedance spectroscopy (EIS) is a powerful tool to measure and quantify the system impedance. However, EIS only provides an average result from the entire electrode surface. Here, we demonstrated a reflection impedance microscope (RIM) that allows us to image and quantify the localized impedance on conductive surfaces.
View Article and Find Full Text PDFMetal anode instability, including dendrite growth, metal corrosion, and hetero-ions interference, occurring at the electrolyte/electrode interface of aqueous batteries, are among the most critical issues hindering their widespread use in energy storage. Herein, a universal strategy is proposed to overcome the anode instability issues by rationally designing alloyed materials, using Zn-M alloys as model systems (M = Mn and other transition metals). An in-situ optical visualization coupled with finite element analysis is utilized to mimic actual electrochemical environments analogous to the actual aqueous batteries and analyze the complex electrochemical behaviors.
View Article and Find Full Text PDFA one-step synthesis using the reversed-phase suspension polymerization method and ultraviolet light curing is proposed for preparing the Raman-encoded suspension array (SA). The encoded microcarriers are prepared by doping the Raman reporter molecules into an aqueous phase, and then dispersing the aqueous phase in an oil phase and curing by ultraviolet light irradiation. The multiplexed biomolecule detection and various concentration experiments confirm the qualitative and quantitative analysis capabilities of the Raman-encoded SA with a limit of detection of 52.
View Article and Find Full Text PDFThe rapid analysis and detection of biomolecules has become increasingly important in biological research. Hence, here we propose a novel suspension array method that is based on gold nanorod (AuNR)-enhanced Raman spectroscopy and uses micro-quartz pieces (MQPs) as microcarriers. AuNRs and Raman reporter molecules are coupled together by Au-S bonds to obtain surface-enhanced Raman scattering labels (SERS labels).
View Article and Find Full Text PDFA deep learning network called "residual neural network" (ResNet) was used to decode Raman spectra-encoded suspension arrays (SAs). With narrow bandwidths and stable signals, Raman spectra have ideal encoding properties. The different Raman reporter molecules assembled micro-quartz pieces (MQPs) were grafted with various biomolecule probes, which enabled simultaneous detection of numerous target analytes in a single sample.
View Article and Find Full Text PDFIon-chelated microbeads (ICMs) for suspension arrays can be prepared by chelating metal ions (MIs), which are used as encoding materials. Stimulating the ICMs, laser induced breakdown spectra (LIBs) can be obtained and the atomic spectra of the chelated ions are chosen as the decoding signals. Our ICMs show digital characteristics with high stability due to the properties of LIBs.
View Article and Find Full Text PDFDual-wavelength digital holographic phase and fluorescence microscopy (DW-DHPFM), combining with Raman spectroscopy, is designed to achieve the detection and analysis of biomolecules with a new dual-channel encoding method. This employs the Raman reporter molecules assembled micro-quartz pieces (MQPs) as microcarriers of suspension array (SA). The dual-wavelength digital holographic phase microscopy (DW-DHPM) and Raman spectroscopy are served as the decoding platforms, and the fluorescence microscopy is used to quantify target analytes.
View Article and Find Full Text PDFAs an efficient tool in the multiplexed detection of biomolecules, bead-array could achieve separation-free detection to multiple targets, making it suitable to analyze valuable and scarce samples like antigen and antibody from living organism. Herein, we propose a spectral-optical-tweezer-assisted fluorescence multiplexing system to analyze biomolecule-conjugated bead-array. Using optical tweezer, we trapped and locked beads at the focus to accept stimulation, offering a stable and optimized analysis condition.
View Article and Find Full Text PDFThe rapid growth of demand for high-throughput multiplexed biochips from modern biotechnology has led to growing interest in suspension array based on multi-channel encoded microbeads. We prepare dual-spectra encoded PEGDA microbeads (DSEPM) by reversed-phase microemulsion UV curing method and layer-by-layer electrostatic self-assembly method. Excitation of the synthesized DSEPM results in two spectra, including fluorescence spectra from quantum dots and laser induced breakdown spectra from nanoparticles with specific elements.
View Article and Find Full Text PDFTo achieve the dual-channel (analog and digital) encoding, microbeads assembled with quantum dots (QDs) and element coding nanoparticles (ECNPs) have been prepared. Dual-spectra, including fluorescence generated from quantum dots (QDs) and laser induced breakdown spectrum obtained from the plasma of ECNPs, including AgO, MgO and ZnO nanoparticles, has been adopted to provide more encoding amounts and more accurate dual recognition for encoded microbeads in multiplexed utilization. The experimental results demonstrate that the single microbead can be decoded in two optical channels.
View Article and Find Full Text PDF