Publications by authors named "Guangxi Zhai"

Article Synopsis
  • The epithelial-mesenchymal transition (EMT), along with tumor-associated stroma and metabolic changes, creates a tumor microenvironment (TME) that supports cancer growth and spread.
  • A new nanomissile therapy called HA@AT-Pd targets both cancer-associated fibroblast (CAF) transformation and the elimination of tumor cells by blocking the TGF-β/Smad pathways that lead to cancer stem cell development.
  • This approach not only depletes energy in cancer cells by inhibiting key metabolic processes but also shifts the TME from immunosuppressive to immune-activating, enhancing the body’s anti-tumor immune response.
View Article and Find Full Text PDF

The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials.

View Article and Find Full Text PDF

Multiple pathogenic types or serotypes restrict treatment for colibacillosis. In addition, rising antibiotic resistance has heightened public awareness to prevent and control pathogenic Escherichia coli. The bacteriophage is a viable technique to treat colibacillosis as an alternative to antibiotics.

View Article and Find Full Text PDF

Atherosclerosis is one of the major causes of death worldwide, and it is closely related to many cardiovascular diseases, such as stroke, myocardial infraction and angina. Although traditional surgical and pharmacological interventions can effectively retard or slow down the progression of atherosclerosis, it is very difficult to prevent or even reverse this disease. In recent years, with the rapid development of nanotechnology, various nanoagents have been designed and applied to different diseases including atherosclerosis.

View Article and Find Full Text PDF

Surgical resection remains the most common method of tumor treatment; however, the high recurrence and metastasis after surgery need to be solved urgently. Herein, we report an injectable zwitterionic hydrogel based on "thiol-ene" click chemistry containing doxorubicin (DOX) and a macrophage membrane (MM)-coated 1-methyl-tryptophan (1-MT)-loaded polyamide-amine dendrimer (P-DOX/1MT) for preventing the postoperative recurrence of tumors. The results indicated that P-DOX/1MT@MM exhibited enhanced recognition and uptake of the dendrimer by tumor cells and induced the immunogenic cell death.

View Article and Find Full Text PDF

Due to the pro-survival effect of mild autophagy, the therapeutic effect of chemo-immunotherapy is unsatisfactory. In addition, the adverse tumour microenvironment (TME), including the lack of antigen presentation, the deficiency of oxygen supply and immunosuppressive cells, results in immune escape and metastasis. Herein, a novel nanoplatform (CS-3BP/PA@DOX) based on the autophagy cascade is proposed for the first time to deliver the chemotherapeutic doxorubicin (DOX) and respiration inhibitor 3-bromopyruvic acid (3BP) to overcome the above obstacles.

View Article and Find Full Text PDF

The eyes have a complicated microenvironment with many clearance mechanisms, making it challenging for effective drug delivery to the targeted areas of the eyes. Substrate transport mediated by active transporters is an important way to change drug metabolism in the ocular microenvironment. We designed multifunctional, dual-adaptive nanomicelles (GSCQ@NTB) which could overcome multiple physiological barriers by acting on both the efflux transporter and influx transporter to achieve deep delivery of the P-gp substrate in the cornea.

View Article and Find Full Text PDF

Growing evidence suggests that the presence of cancer stem cells (CSCs) is a major challenge in current tumor treatments, especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis. Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy. In this work, we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid (ATRA) biomineralization.

View Article and Find Full Text PDF
Article Synopsis
  • Surgical resection is the primary treatment for breast cancer, but leftover tumor cells and a suppressive tumor microenvironment (TME) can lead to recurrence and metastasis after surgery.
  • A new injectable zwitterionic hydrogel system has been developed to deliver drugs locally, enhance immune responses, and reduce tumor recurrence by combining a chemotherapy drug (doxorubicin) with nanoparticles and a STING pathway activator.
  • This hydrogel system releases the STING agonist to stimulate immune signaling before targeting leftover cancer cells, leading to better tumor cell death and improved immune cell activation, which helps prevent the return of cancer post-surgery.
View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is one of the most aggressive cancers with an immunosuppressive microenvironment, and achieving a satisfactory effect from monotherapies, such as chemotherapy, photodynamic therapy (PDT) or immunotherapy, remains difficult. To solve this puzzle, a deepening synergistic therapy strategy of DNA damage and immunogenic cell death (ICD) stimuli was proposed. We engineered a doxorubicin (DOX) and 4-(hydroxymethyl) phenylboronic acid pinacol ester (PBAP) prodrug polymer, and encapsulated chlorin e6 (Ce6) to obtain the hyaluronidase (HAase) and HO dual-sensitive responsive nanoparticles (Ce6/HDP NPs).

View Article and Find Full Text PDF

Ferroptosis activation has been considered a mighty weapon for cancer treatment, and growing attention is being paid to reinforcing tumor cells' sensitivity to ferroptosis. However, the existence of certain ferroptosis resistance mechanisms, especially the abnormal metabolism of tumor cells, has long been underestimated. We propose an enhanced ferroptosis-activating pattern via regulating tumor cells' glycometabolism and construct a nanoplatform named PMVL, which is composed of lonidamine (LND)-loaded tannic acid coordinated vanadium oxides with the camouflage of PD-L1 inhibiting peptide-modified tumor cell membrane.

View Article and Find Full Text PDF

The application of variable novel drug delivery system has shown a flowering trend in recent years. Among them, the cell-based drug delivery system (DDS) utilizes the unique physiological function of cells to deliver drugs to the lesion area, which is the most complex and intelligent DDS at present. Compared with the traditional DDS, the cell-based DDS has the potential of prolonged circulation in body.

View Article and Find Full Text PDF

Abdominal adhesions are a class of serious complications following abdominal surgery, resulting in a complicated and severe syndrome and sometimes leading to a Gordian knot. Traditional therapies employ hydrogels synthesized using complicated chemical formulations-often with click chemistry or thermal responsive hydrogel. The complicated synthesis process and severe conditions limit the extent of the hydrogels' applications.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) could be produced by most cells and play an important role in disease development. As a subtype of EVs, exosomes exhibit suitable size, rich surface markers and diverse contents, making them more appealing as potential drug carriers. Compared with traditional synthetic nanoparticles, exosomes possess superior biocompatibility and much lower immunogenicity.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a minimally invasive and locally effective treatment method, which has been used in the clinical treatment of a variety of superficial tumors. In recent years, PDT has received extensive attention due to its induction of immunogenic cell death (ICD). However, the repair mechanism of tumor cells and low immune response limit the further development of PDT.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) induces apoptosis of cancer cells by generating cytotoxic reactive oxygen species, the therapeutic effect of which, however, is impeded by intrinsic/inducible apoptosis-resistant mechanisms in cancer cells and hypoxia of tumor microenvironment (TME); also, PDT-induced anti-tumor immunity activation is insufficient. To deal with these obstacles, a novel biomimetic nanoplatform is fabricated for the precise delivery of photosensitizer chlorin e6 (Ce6), hemin and PEP20 (CD47 inhibitory peptide), integrating oxygen-boosted PDT, ferroptosis activation and CD47-SIRPα blockade. Hemin's catalase-mimetic activity alleviates TME hypoxia and enhances PDT.

View Article and Find Full Text PDF

Due to the complex bloodstream components, tumor microenvironment and tumor heterogeneity, traditional nanoparticles have a limited effect (low drug delivery efficiency and poor penetration to the deeper tumor) on eradicating tumors. To solve these challenges, novel platelet membrane-coated nanoparticles (PCDD NPs) were constructed for combined chemo-photodynamic- and immunotherapy of melanoma. The platelet membrane imparted the PCDD nanoparticles with an excellent long circulation effect and tumor targeting ability, which solved the issues of low drug delivery efficiency.

View Article and Find Full Text PDF

Background: A redox-sensitive nanoscale delivery system was developed, based on the hydrophilic chitosan oligosaccharide-ss-hydrophobic curcumin conjugate (CSO-ss-CUR) loaded with docetaxel (DTX), for the targeting and synergistic treatment of gliomas.

Methods: Redox-sensitive nanoparticles were loaded with DTX (DTX/CSO-ss-CUR) using the improved ultrasonic-dialysis approach. The morphology and particle size of the loaded nanoparticles were examined by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively.

View Article and Find Full Text PDF

Palatability is one of the most critical characteristics of oral preparations. Therefore, the exploration of new techniques to mask the aversive taste of drugs is in continuous demand. In this study, we fabricated and characterized composites based on mesoporous silica (MPS) that consisted of MPS, a bitter drug, and release regulators.

View Article and Find Full Text PDF

Introduction: Compared with ordinary chemotherapeutic drugs, the variable-size nanoparticles (NPs) have better therapeutic effects and fewer side effects.

Areas Covered: This review mainly summarizes the strategies used to construct smart, size-tunable nanocarriers based on characteristic factors of tumor microenvironment (TME) to dramatically increase the penetration and retention of drugs within tumors.

Expert Opinion: Nanosystems with changeable sizes based on the TME have been extensively studied in the past decade, and their permeability and retention have been greatly improved, making them a very promising treatment for tumors.

View Article and Find Full Text PDF

Over activation of immune checkpoint pathways assists tumor cells to escape the surveillance of immune system, resulting in generation and development of tumor. Drugs blocking immune checkpoints target lymphocyte receptors or their ligands to enhance endogenous antitumor activity by activating the immune system. The drugs targeting PD-1/PD-L1 axis have achieved favourable clinical efficacy, less and controllable toxicity and side effects.

View Article and Find Full Text PDF

Molybdenum oxide (MoOx) nanosheets have drawn increasing attention for minimally invasive cancer treatments but still face great challenges, including complex modifications and the lack of efficient accumulation in tumor. In this work, a novel multifunctional degradable FA-BSA-PEG/MoOx nanosheet was fabricated (LA-PEG and FA-BSA dual modified MoOx): the synergistic effect of PEG and BSA endows the nanosheet with excellent stability and compatibility; the FA, a targeting ligand, facilitates the accumulation of nanosheets in the tumor. In addition, DTX, a model drug for breast cancer treatment, was loaded (76.

View Article and Find Full Text PDF

The restricted tumor penetration has been regarded as the Achilles' Heels of most nanomedicines, largely limiting their efficacy. To address this challenge, a cluster-bomb-like nanoplatform named CPIM is prepared, which for the first time combines size-transforming and transcytosis strategies, thus enhancing both passive and active transport. For passive diffusion, the "cluster-bomb" CPIM (135 nm) releases drug-loaded "bomblets" (IR780/1-methyl-tryptophan (1 MT) loaded PAMAM, <10 nm) in response to the high reactive-oxygen-species (ROS) concentration in tumor microenvironment (TME), which promotes intratumoral diffusion.

View Article and Find Full Text PDF

Background: Glioblastoma is a lethal neoplasm with few effective therapy options. As a mainstay in the current treatment of glioma at present, chemotherapeutic agents usually show inadequate therapeutic efficiency due to their low blood brain barrier traversal and brain targeting, together with tumor multidrug resistance. Novel treatment strategies are thus urgently needed to improve chemotherapy outcomes.

View Article and Find Full Text PDF

Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry.

View Article and Find Full Text PDF