Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDFAntiferromagnets (AFMs) are ideal materials to boost neuromorphic computing toward the ultrahigh speed and ultracompact integration regime. However, developing a suitable AFM neuromorphic memory remains an aspirational but challenging goal. In this work, we construct such a memory based on the CoO/Pt heterostructure, in which the collinear insulating AFM CoO shows a strong perpendicular anisotropy facilitating its electrical readout and writing.
View Article and Find Full Text PDFMotivation: Gene regulatory networks (GRNs) encode gene regulation in living organisms, and have become a critical tool to understand complex biological processes. However, due to the dynamic and complex nature of gene regulation, inferring GRNs from scRNA-seq data is still a challenging task. Existing computational methods usually focus on the close connections between genes, and ignore the global structure and distal regulatory relationships.
View Article and Find Full Text PDFProline Rich 12 (PRR12) protein is primarily expressed in the brain and localized in the nucleus. The variants in the gene were reported to be related to neuroocular syndrome. Patients with gene presented with intellectual disability (ID), neuropsychiatric disorders, some congenital anomalies, and with or without eye abnormalities.
View Article and Find Full Text PDFRecognition and judgment of X-ray computed tomography (CT) images play a crucial role in medical diagnosis and disease prevention. However, the storage and calculation of the X-ray imaging system applied in the traditional CT diagnosis is separate, and the pathological judgment is based on doctors' experience, which will affect the timeliness and accuracy of decision-making. In this paper, a simple-structured reservoir computing network (RC) is proposed based on GaO X-ray optical synaptic devices to recognize medical skeletal CT images with high accuracy.
View Article and Find Full Text PDFDetecting high-energy photons from the deep ultraviolet (DUV) to X-rays is vital in security, medicine, industry, and science. Wide bandgap (WBG) semiconductors exhibit great potential for detecting high-energy photons. However, the implementation of highly sensitive and high-speed detectors based on WBG semiconductors has been a huge challenge due to the inevitable deep level traps and the lack of appropriate device structure engineering.
View Article and Find Full Text PDFPlant essential oil has attracted much attention in delaying pork spoilage due to its safety, but its low antibacterial efficiency needs to be solved by encapsulation. Our previous research had fabricated a type of ovalbumin gel nanoparticles loaded with carvacrol (OCG-2) using the gel-embedding method, which had a high encapsulation rate and antibacterial activity. The main purpose of this study was to further evaluate the stability and slow-release characteristics of OCG-2 and potential quality effects of the nanoparticles on the preservation of fresh pork pieces during 4 °C storage.
View Article and Find Full Text PDFDrug combination therapy has gradually become a promising treatment strategy for complex or co-existing diseases. As drug-drug interactions (DDIs) may cause unexpected adverse drug reactions, DDI prediction is an important task in pharmacology and clinical applications. Recently, researchers have proposed several deep learning methods to predict DDIs.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
October 2023
The neurotrophin-tyrosine receptor kinase B (TrkB) signaling pathway plays an important role in regulating the balance of excitation and inhibition in the primary visual cortex (V1). Previous studies have revealed its mechanism of regulating the level of cortical excitability by increasing the efficiency of excitatory transmission, but it has not been elucidated how TrkB receptors regulate the balance of excitation and inhibition through the inhibitory system, which in turn affects visual cortex function. Therefore, the objective of this study was to investigate how the TrkB signaling pathway specifically regulates the most important inhibitory neuron-PV neurons affects the visual cortex function of mice.
View Article and Find Full Text PDFThe accurate calculation of the contribution which provided by clay minerals in coal on methane adsorption not only bares a significant importance for evaluating the effectiveness of acid stimulation in improving permeability and estimating the coalbed methane reserves but also serves a guide for the governance and utilization of methane resources. In this study, hydrochloric acid (HCl) and hydrofluoric acid (HF) were used to remove specific minerals in Qingdong coal samples. We firstly analyzed the mineral compositions of coal samples with different acidification treatments based on the X-ray diffraction (XRD) experiments, together with analysis of the changes in pore morphology and adsorption capacity.
View Article and Find Full Text PDFThe preparation of polymers with high self-healing ability is conducive to environmental protection and resource conservation. In the present work, two kinds of polyurethane (PU) elastomers were prepared: the one containing flexible end blocks (polypropylene glycol) and the other containing flexible end blocks and 2-ureido-4[1]-pyrimidinone (UPy) groups that can form reversible quadruple hydrogen bonds. Both of the two PU elastomers have self-healing ability.
View Article and Find Full Text PDFBackground: The simplified 3-grade system for measuring fat infiltration in the paraspinal muscles is widely utilized. In comparing our proposed 4-grade system to the existing 3-grade system, we evaluated its impact on results and particularly its ability to predict disc herniation, ultimately highlighting deficiencies in the latter. The objective of this investigation was to validate the efficacy of our newly proposed semi-quantitative simplified 4-grade system for assessing fat infiltration, as compared to the existing literature-based simplified 3-grade system, in terms of their predictive value for lumbar disc herniation.
View Article and Find Full Text PDFAffected by tectonics, soft and hard composite coal seams are widely distributed in China; the soft stratification in the soft and hard composite coal seam is the key to controlling the occurrence of coal and gas outburst accidents. Based on this, for soft and hard composite coal seams, in order to accurately extract soft layers, a directional hydraulic coal mining equipment has been developed, including a drilling rig pump truck system, a directional coal wireless measurement system, and a cutter drill pipe system. By constructing a mathematical model and conducting numerical simulations, it was found that the vertical stress, horizontal stress, and gas pressure of the coal body around the borehole after coal extraction decreased significantly compared to normal borehole conditions; the on-site test results indicate that the hydraulic coal extraction volume of directional hydraulic coal extraction boreholes reaches 0.
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation learning.
View Article and Find Full Text PDFDetection and recognition of latent fingerprints play crucial roles in identification and security. However, the separation of sensor, memory, and processor in conventional ex-situ fingerprint recognition system seriously deteriorates the latency of decision-making and inevitably increases the overall computing power. In this work, a photoelectronic reservoir computing (RC) system, consisting of DUV photo-synapses and nonvolatile memristor array, is developed to detect and recognize the latent fingerprint with in-sensor and parallel in-memory computing.
View Article and Find Full Text PDFBrain-inspired neuromorphic computing hardware based on artificial synapses offers efficient solutions to perform computational tasks. However, the nonlinearity and asymmetry of synaptic weight updates in reported artificial synapses have impeded achieving high accuracy in neural networks. Here, this work develops a synaptic memtransistor based on polarization switching in a two-dimensional (2D) ferroelectric semiconductor (FES) of α-In Se for neuromorphic computing.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
May 2022
Liver cancer (HCC) is a common malignant tumor whose incidence is increasing worldwide, but existing chemotherapeutic agents are not ideally effective drugs and have considerable resistance to chemotherapy. Exosome microRNA-103 plays an important role in the proliferation and invasion of liver cancer cells. The purpose of this article is to investigate the role and mechanism of exosome microRNA-103 in hepatocellular carcinoma cell proliferation and invasion.
View Article and Find Full Text PDFThe angle and position of the scapular glenoid are important in shoulder mechanics, the interpretation of diseases, and planning shoulder replacement surgery. In total shoulder replacement, understanding the bony parameters of the glenoid is also of considerable guiding significance for designing implant size and improving material adaptability. To compare glenoid parameters measured from skeletal scapula specimens with those measured by 3D modeling of CT scanning images, analyze correlations between these data, and draw conclusions to guide clinical treatment of shoulder joint injury and total shoulder joint replacement.
View Article and Find Full Text PDFThe development of single-cell RNA-seq (scRNA-seq) technology allows researchers to characterize the cell types, states and transitions during dynamic biological processes at single-cell resolution. One of the critical tasks is to infer pseudo-time trajectory. However, the existence of transition cells in the intermediate state of complex biological processes poses a challenge for the trajectory inference.
View Article and Find Full Text PDFAccurate inference of gene regulatory rules is critical to understanding cellular processes. Existing computational methods usually decompose the inference of gene regulatory networks (GRNs) into multiple subproblems, rather than detecting potential causal relationships simultaneously, which limits the application to data with a small number of genes. Here, we propose BiRGRN, a novel computational algorithm for inferring GRNs from time-series single-cell RNA-seq (scRNA-seq) data.
View Article and Find Full Text PDFDiabetes can damage both the peripheral sensory organs, causing retinopathy, and the central visual system, leading to contrast sensitivity and impaired color vision in patients without retinopathy. Orientation discrimination is important for shape recognition by the visual system. Our psychophysical findings in this study show diminished orientation discrimination in patients with diabetes without retinopathy.
View Article and Find Full Text PDFThe use of the BRAF inhibitor vemurafenib exhibits drug resistance in the treatment of thyroid cancer (TC), and finding more effective multitarget combination therapies may be an important solution. In the present study, we found strong correlations between Ref-1 high expression and BRAF mutation, lymph node metastasis, and TNM stage. The oxidative stress environment induced by structural activation of BRAF upregulates the expression of Ref-1, which caused intrinsic resistance of PTC to vemurafenib.
View Article and Find Full Text PDFThe resistive switching effect in memristors typically stems from the formation and rupture of localized conductive filament paths, and HfO has been accepted as one of the most promising resistive switching materials. However, the dynamic changes in the resistive switching process, including the composition and structure of conductive filaments, and especially the evolution of conductive filament surroundings, remain controversial in HfO-based memristors. Here, the conductive filament system in the amorphous HfO-based memristors with various top electrodes is revealed to be with a quasi-core-shell structure consisting of metallic hexagonal-HfO and its crystalline surroundings (monoclinic or tetragonal HfO).
View Article and Find Full Text PDF