Two-dimensional (2D) semiconductors are the building blocks for high-performance optoelectronic devices. However, the performance of photoconductive photodetectors based on 2D semiconductors is hampered by low photoresponsivity and large dark current. Herein, a van der Waals heterostructure (vdWH) composed of rhenium disulfide (ReS) and tellurium (Te) is fabricated.
View Article and Find Full Text PDFAnodic aluminium oxide (AAO) membranes with self-ordered nanochannels have become promising candidates for applications in the aspects such as structural coloration, photonic crystals, upconversion luminescence and nanofluidic transport. Also, self-ordered AAO membranes have been extensively used for the fabrication of functional nanostructures such as nanowires, nanotubes, nanoparticles, nanorods and nanopillars. Geometries of nanochannels are crucial for the applications of AAO membranes as well as controlling growth (, nucleation, direction and morphology) and in applications (, optics, magnetics, thermoelectrics, biology, medicine, sensing, and energy conversion and storage) of the functional nanostructures fabricated AAO template-based methods.
View Article and Find Full Text PDFPlasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses.
View Article and Find Full Text PDFTuning transversal resonance modes of localized surface plasmons (LSPs) by the size and the ambient dielectric medium of Ag nanorods is presented. It is found that the resonance wavelength and intensity of the transversal modes of LSPs are closely related to the dimensions of the Ag nanorods embedded in anodic aluminum oxide membranes. The transversal resonance peak exhibits obvious redshifts from 365 to 396 nm with increasing nanorod diameter from 40 to 80 nm, and the resonance intensity remarkably enhances with increasing nanorod diameter.
View Article and Find Full Text PDFHigh- and reproducible-performance photodetectors are critical to the development of many technologies, which mainly include one-dimensional (1D) nanostructure based and film based photodetectors. The former suffer from a huge performance variation because the performance is quite sensitive to the synthesis microenvironment of 1D nanostructure. Herein, we show that the graphene/semiconductor film hybrid photodetectors not only possess a high performance but also have a reproducible performance.
View Article and Find Full Text PDFThe cathodoluminescence and optoelectronic properties based on an individual CdS/CdSe/CdS biaxial nanobelt are revealed in the present study. Both typical CdS and CdSe emissions are detected from as-grown CdS/CdSe/CdS nanobelts. The photodetector based on this nanobelt exhibits high sensitivity and excellent cycle stability.
View Article and Find Full Text PDFNanoscale Res Lett
October 2012
: In this study, Ni and Cu nanowire arrays and Ni/Cu superlattice nanowire arrays are fabricated using standard techniques such as electrochemical deposition of metals into porous anodic alumina oxide templates having pore diameters of about 50 nm. We perform optical measurements on these nanowire array structures. Optical reflectance (OR) of the as-prepared samples is recorded using an imaging spectrometer in the wavelength range from 400 to 2,000 nm (i.
View Article and Find Full Text PDFThe electronic properties and the trends with varying dopant atomic number of III, IV, and V main group elements in MgO have been investigated using density functional theory. It is found that all of the geometry-optimized systems with the dopant atom replacing O in MgO exhibit half-metallic ferromagnetic properties regardless of metal or non-metal doping, and this agrees well with other theoretical computations. However, because of the high formation energy of metal atoms substituting for O atoms, we have calculated metal atom substitution for the Mg atom in MgO.
View Article and Find Full Text PDFThis paper describes the enhanced separation of lomefloxacin, sparfloxacin, fleroxacin, norfloxacin, ofloxacin, gatifloxacin and pazufloxacin by capillary zone electrophoresis (CZE) using silica nanoparticles (SiNPs) as running buffer additive. The impact of SiNPs concentration on the resolution and selectivity of separation was investigated and a given value of SiNPs was finally chosen under the optimum conditions. The addition of the SiNPs to the running buffer enabled electroosmotic flow (EOF) decrease and permitted full interaction between SiNPs and analytes.
View Article and Find Full Text PDFThe tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical property.
View Article and Find Full Text PDF