Photothermal conversion is a directly, sustainable, and green path to use solar energy and the one of the most important keys is the photothermal conversion material. How to obtain the durable and effective material for photothermal conversion with low cost and facile preparation is still a great challenge. In this work, the carbon nanotubes (CNTs) are grown on the carbon fibers (CFs) via the catalysis of trapped Fe and Co.
View Article and Find Full Text PDFHere, polyaniline (PANI) is reported loaded on carbon paper to modify the carbon paper-PANI-Pt electrode surface, tailoring the electrocatalytic capability towards the hydrogen evolution reaction and ethanol oxidation reaction. The reasons for the enhancement by the PANI layer are attributed to the hydrophilic electrode surface, uniform dispersion of Pt, and large electrochemical active surface.
View Article and Find Full Text PDFMulticomponent metal sulfides have been recognized as promising anode materials for lithium/sodium-ion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the construction of heterogeneous interfaces of multimetal sulfides remain great challenges. Herein, a hierarchical 1T-MoS/carbon nanosheet decorated CoS/N-doped carbon (CoS/NC@MoS/C) hollow nanofiber was designed and constructed via a one-pot hydrothermal method using a cobalt-based coordination polymer nanofiber.
View Article and Find Full Text PDFThe Co/N-doped carbon material, as an important electrocatalytic material, has been attracted intense interest in ORR and Zn-air battery. Here, we report an efficient Co@N-doped carbon catalyst (Co@N-C-1) obtained by pyrolysis of ZIF precursor with 2-aminobenzimidazole. The introduction of 2-aminobenzimidazole results in the formation of hierarchical meso/microporous structure of the as-prepared Co@N-C-1, effectively avoiding the aggregation of Co nanoparticles during pyrolysis and the higher N content, which contributes to enhance the ORR electrocatalytic activities.
View Article and Find Full Text PDFAlkali metal-oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode. The proposed potassium biphenyl complex-oxygen battery exhibits an unprecedented cycle life (3,000 cycles) with a superior average coulombic efficiency of more than 99.
View Article and Find Full Text PDF