Methods Mol Biol
December 2024
Single-cell omics technologies have revolutionized the study of long non-coding RNAs (lncRNAs), offering unprecedented resolution in elucidating their expression dynamics, cell-type specificity, and associated gene regulatory networks (GRNs). Concurrently, the integration of artificial intelligence (AI) methodologies has significantly advanced our understanding of lncRNA functions and its implications in disease pathogenesis. This chapter discusses the progress in single-cell omics data analysis, emphasizing its pivotal role in unraveling the molecular mechanisms underlying cellular heterogeneity and the associated regulatory networks involving lncRNAs.
View Article and Find Full Text PDFSpatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacency and transcription profile derived feature matrix are often used to solve the problem. Our proposed method STGIC (spatial transcriptomic clustering with graph and image convolution) is designed for techniques with regular lattices on chips.
View Article and Find Full Text PDF