Publications by authors named "Guangshuai Han"

An electrochemical method is proposed to integrate FeSe/FeS heterostructures into a 3D S-doped carbon framework, enhancing sodium storage capacity and kinetics. Concurrently, both and techniques are employed to investigate the underlying mechanisms.

View Article and Find Full Text PDF

The moisture content of pharmaceutical powders can significantly impact the physical and chemical properties of drug formulations, solubility, flowability, and stability. However, current technologies for measuring moisture content in pharmaceutical materials require extensive calibration processes, leading to poor consistency and a lack of speed. To address this challenge, this study explores the feasibility of using impedance spectroscopy to enable accurate, rapid testing of moisture content of pharmaceutical materials with minimal to zero calibration.

View Article and Find Full Text PDF

Transition metal sulfides (TMS) have gained significant attention as potential anode materials for sodium ion batteries (SIBs) due to their high theoretical capacity and abundance in nature. Nevertheless, their practical use has been impeded by challenges such as large volume changes, unstable solid electrolyte interphase (SEI), and low initial coulombic efficiency (ICE). To address these issues and achieve both long-term cycling stability and high ICE simultaneously, we present a novel approach involving surface engineering, termed as the "dual-polar confinement" strategy, combined with interface engineering to enhance the electrochemical performance of TMS.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) are widely used as the energy carrier in our daily life. However, the higher energy density of LIBs results in poor safety performance. Thermal runaway (TR) is the critical problem which hinders the further application of LIBs.

View Article and Find Full Text PDF

Overcharge is a hazardous abuse condition that has dominant influences on cell performance and safety. This work, for the first time, comprehensively investigates the impact of different overcharge degrees on degradation and thermal runaway behavior of lithium-ion batteries. The results indicate that single overcharge has little influence on cell capacity, while it severely degrades thermal stability.

View Article and Find Full Text PDF