Materials informatics has emerged as a promisingly new paradigm for accelerating materials discovery and design. It exploits the intelligent power of machine learning methods in massive materials data from experiments or simulations to seek new materials, functionality, and principles, etc. Developing specialized facilities to generate, collect, manage, learn, and mine large-scale materials data is crucial to materials informatics.
View Article and Find Full Text PDFThe quantum confinement effect resulting from size reduction drastically alters the electronic structure and optical properties of optoelectronic materials. Quantum confinement in nanomaterials can be efficiently controlled by morphology variation combined characteristics of nanomaterials, such as their size, shape, and spatial organization. In this study, considering indium arsenide (InAs) in tetrahedral semiconductors as an example, we demonstrated the controllable morphology evolution of InAs nanostructures by tuning the growth conditions.
View Article and Find Full Text PDFLead bromide perovskite nanoparticles are fabricated in the water, which has been recognized previously as a severe source of damage to halide perovskite materials and devices. The perovskite nanoparticles exhibit a high photoluminescence quantum yield and excellent material stability.
View Article and Find Full Text PDFOrganic-inorganic hybrid halide perovskites (ABX), especially layered 2D perovskites, have been recognized as promising semiconductors due to their tunable crystal structure and unique optoelectronic properties. A-site cations, as spacers, allow various metal halide assemblies, but the stacking pattern and the influence of their collective behavior on the properties of the resultant materials remain ambiguous. Here, the cation-stacking effects in the 2D perovskite single crystals, with a focus on the electron-phonon interaction, are investigated.
View Article and Find Full Text PDFCurrently, the blue perovskite light-emitting diodes (PeLEDs) suffer from a compromise in lead toxicity and poor operation stability, and most previous studies have struggled to meet the crucial blue NTSC standard. In this study, electrically driven deep-blue LEDs (∼445 nm) based on zero-dimensional (0D) CsCuI nanocrystals (NCs) were demonstrated with the color coordinates of (0.16, 0.
View Article and Find Full Text PDFAll-inorganic halide perovskites are promising materials for optoelectronic applications. The surface or interface structure of the perovskites plays a crucial role in determining the optoelectronic conversion efficiency, as well as the material stability. A thorough understanding of surface atomic structures of the inorganic perovskites and their contributions to their optoelectronic properties and stability is lacking.
View Article and Find Full Text PDFThe two-dimensional (2D) atomically thin layered materials have attracted significant attention for constructing next-generation integrated electronic and optoelectronic devices. A special class of 2D materials composed of quasi one-dimensional (1D) atomic chains that show intriguing properties are less studied. Here, two Se-containing 2D layered materials α-Se and SbSe that have quasi-1D atomic chains are investigated via first-principles electronic structure calculations.
View Article and Find Full Text PDFThe mixed halide perovskites have emerged as outstanding light absorbers for efficient solar cells. Unfortunately, it reveals inhomogeneity in these polycrystalline films due to composition separation, which leads to local lattice mismatches and emergent residual strains consequently. Thus far, the understanding of these residual strains and their effects on photovoltaic device performance is absent.
View Article and Find Full Text PDFWe report switchable, fluorescent carbohydrate nanofibers formed through the self-assembly of aromatic rod amphiphiles with a combination of mannose epitopes and thermoresponsive oligoether dendrons. The carbohydrate nanofibers undergo reversible switching between carbohydrate-exposed and hidden states on their surface in response to a thermal signal, and have the ability to regulate cell proliferation.
View Article and Find Full Text PDF