Publications by authors named "Guangquan Cheng"

Federated learning (FL) is an emerging distributed machine learning (ML) framework that operates under privacy and communication constraints. To mitigate the data heterogeneity underlying FL, clustered FL (CFL) was proposed to learn customized models for different client groups. However, due to the lack of effective client selection strategies, the CFL process is relatively slow, and the model performance is also limited in the presence of nonindependent and identically distributed (non-IID) client data.

View Article and Find Full Text PDF

In many domains of empirical sciences, discovering the causal structure within variables remains an indispensable task. Recently, to tackle unoriented edges or latent assumptions violation suffered by conventional methods, researchers formulated a reinforcement learning (RL) procedure for causal discovery and equipped a REINFORCE algorithm to search for the best rewarded directed acyclic graph. The two keys to the overall performance of the procedure are the robustness of RL methods and the efficient encoding of variables.

View Article and Find Full Text PDF

With the more extensive application of flexible robots, the expectation for flexible manipulators is also increasing rapidly. However, the fast convergence will cause the increase of vibration amplitude to some extent, and it is difficult to obtain vibration suppression and satisfactory transient performance at the same time. In order to deal with the problem, a fixed-time learning control method is proposed to realize the fast convergence.

View Article and Find Full Text PDF

Beginning on December 31, 2019, the large-scale novel coronavirus disease 2019 (COVID-19) emerged in China. Tracking and analysing the heterogeneity and effectiveness of cities' prevention and control of the COVID-19 epidemic is essential to design and adjust epidemic prevention and control measures. The number of newly confirmed cases in 25 of China's most-affected cities for the COVID-19 epidemic from January 11 to February 10 was collected.

View Article and Find Full Text PDF

The identification of drug target proteins (IDTP) plays a critical role in biometrics. The aim of this study was to retrieve potential drug target proteins (DTPs) from a collected protein dataset, which represents an overwhelming task of great significance. Previously reported methodologies for this task generally employ protein-protein interactive networks but neglect informative biochemical attributes.

View Article and Find Full Text PDF