Publications by authors named "Guangqin Jing"

Hydrogen sulfide (HS), the third gasotransmitter, has positive roles in animals and plants. Mitochondria are the source and the target of HS and the regulatory hub in metabolism, stress, and disease. Mitochondrial bioenergetics is a vital process that produces ATP and provides energy to support the physiological and biochemical processes.

View Article and Find Full Text PDF

Low temperature can affect DNA methylation. Since exogenous use of NO can reduce cold damage in peach fruit during cold storage, this study investigated the roles of NO on DNA methylation of peaches suffering cold stress. The results showed that exogenous NO effectively alleviated the decrease in total DNA methyltransferase (DNMT) activity and transcript levels induced by cold stress, whereas c-PTIO exacerbated the decrease in total DNMT activity and transcript levels.

View Article and Find Full Text PDF

Sodium (Na+) and potassium (K+) homeostasis is essential for plant survival in saline soils. A member of the High-Affinity K+ Transporter (HKT) family in rice (Oryza sativa), OsHKT1;1, is a vital regulator of Na+ exclusion from shoots and is bound by a MYB transcription factor (OsMYBc). Here, we generated transgenic rice lines in the oshkt1;1 mutant background for genetic complementation using genomic OsHKT1;1 containing a native (Com) or mutated (mCom) promoter that cannot be bound by OsMYBc.

View Article and Find Full Text PDF

Hydrogen sulfide (HS), nitric oxide (NO), and reactive oxygen species (ROS) play essential signaling roles in cells by oxidative post-translational modification within suitable ranges of concentration. All of them contribute to the balance of redox and are involved in the DNA damage and repair pathways. However, the damage and repair pathways of mitochondrial DNA (mtDNA) are complicated, and the interactions among NO, HS, ROS, and mtDNA damage are also intricate.

View Article and Find Full Text PDF

Triacylglycerol (TAG), a main component of oil, is mainly biosynthesized by diacylglycerol acyltransferase (DGAT), which is critical for oil accumulation in plants. Intensive focus has been on DGAT2 functioning in unsaturated fatty acids biosynthesis. In this study, we analyzed the coding sequence (CDS) and amino acid sequence of GmDGAT2A and determined its key active sites through site-directed mutagenesis.

View Article and Find Full Text PDF

Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids to yield phosphatidic acid (PA) and a free headgroup. PLDs are important for plant growth, development, and responses to external stresses. However, their roles in triacylglycerol (TAG) synthesis are still unclear.

View Article and Find Full Text PDF

Acyl-CoA:diacylglycerol acyltransferase (DGAT) is a key enzyme in the Kennedy pathway of triacylglycerol (TAG) synthesis. It catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to form TAG. DGATs in soybean (Glycine max) have been reported, but their functions are largely unclear.

View Article and Find Full Text PDF

Background: It has been confirmed that the accumulation of reactive oxygen species (ROS) in fruit can cause oxidative damage and nitric oxide (NO) can regulate the accumulation of ROS and the antioxidative defence of fruit. However, little is known about the roles of NO on the antioxidant system in mitochondria of fruit. In this study, Feicheng peach fruits were dipped with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) and NO solutions to explore the effects of NO on the membrane permeability transition and antioxidant system in mitochondria of peach fruit.

View Article and Find Full Text PDF