Publications by authors named "Guangping Zheng"

Maxing Yigan formula (MYF) is a traditional Chinese medicine (TCM) prescription used for the treatment of OA for decades in China. However, the mechanism remains unknown. In this study, we developed a MYF-incorporated collagen sponge (MYF@CS) and investigated its cartilage regeneration effect and the underlying mechanism.

View Article and Find Full Text PDF

In addressing challenges such as side reaction and dendrite formation, electrolyte modification with bio-molecule sugar species has emerged as a promising avenue for Zn anode stabilization. Nevertheless, considering the structural variability of sugar, a comprehensive screening strategy is meaningful yet remains elusive. Herein, we report the usage of sugar additives as a representative of bio-molecules to develop a screening descriptor based on the modulation of the hydrogen bond component and electron transfer kinetics.

View Article and Find Full Text PDF

The synthesis of carbon supporter/nanoscale high-entropy alloys (HEAs) electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes. Electron migration modes within HEAs as manipulated by the electronegativity, valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles. Herein, enlightened by skin-like effect, a reformative carbothermal shock method using carbonized cellulose paper (CCP) as carbon supporter is used to preserve the oxygen-containing functional groups (O·) of carbonized cellulose fibers (CCF).

View Article and Find Full Text PDF

Ni-Mn-Sn-based ferromagnetic shape memory alloys (FSMAs) are multifunctional materials that are promising for solid-state refrigeration applications based on the magnetocaloric effect (MCE) and elastocaloric effect (eCE). However, a combination of excellent multi-caloric properties, suitable operating temperatures, and mechanical properties cannot be well achieved in these materials, posing a challenge for their practical application. In this work, we systematically study the phase transformations and magnetic properties of NiMnSnCu (x = 0, 2, 3, 4, 5, and 6) and NiMnSnFe (y = 0, 1, 2, 3, 4, and 5) alloys, and the magnetic-structural phase diagrams of these alloy systems are reported.

View Article and Find Full Text PDF

Shear banding is much dependent on the glass-glass interfaces (GGIs) in metallic nanoglasses (NGs). Nevertheless, the current understanding of the glass phase of GGIs is not well established for controlling the shear banding in NGs. In this study, Co-P NGs are investigated by molecular dynamics simulations to reveal the phenomenon of elemental segregation in the GGI regions where the content of Co is dominant.

View Article and Find Full Text PDF

Background: Previous studies have confirmed that malignant transformation of dysplastic nodule (DN) into hepatocellular carcinoma (HCC) is accompanied by reduction of iron content in nodules. This pathological abnormality can serve as the basis for magnetic resonance imaging (MRI). This study was designed to identify the feasibility of iterative decomposition of water and fat with echo asymmetry and least squares estimation-iron quantitative (IDEAL-IQ) measurement to distinguish early hepatocellular carcinoma (eHCC) from DN.

View Article and Find Full Text PDF

The glass-glass interfaces (GGIs) are in a unique glass phase, while current knowledge on the interfacial phase has not completely established to explain the unprecedented improvements in the ductility of metallic nanoglasses (NGs). In this work, Co-P NGs prepared through the pulse electrodeposition are investigated, whose GGI regions clearly show elemental segregation with chemical composition dominated by element Co. Such compositional heterogeneity is further verified by molecular dynamics (MD) simulation on the formation of GGIs in Co-P NGs and atomic structures of GGIs with Co segregation are found to be less dense than those of glassy grains.

View Article and Find Full Text PDF

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality.

View Article and Find Full Text PDF

Background: Pulmonary nodular consolidation (PN) and pulmonary cavity (PC) may represent the two most promising imaging signs in differentiating multidrug-resistant (MDR)-pulmonary tuberculosis (PTB) from drug-sensitive (DS)-PTB. However, there have been concerns that literature described radiological feature differences between DS-PTB and MDR-PTB were confounded by that MDR-PTB cases tend to have a longer history. This study seeks to further clarify this point.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3 (LOXL3) affects the autophagy in chondrocytes in osteoarthritis (OA), specifically through the activation of mammalian target of rapamycin complex 1 (mTORC1).

Methods: To establish an OA model, rats underwent anterior cruciate ligament transection (ACLT). Chondrocytes were isolated from cartilage tissues and cultured.

View Article and Find Full Text PDF

The laminated transition metal disulfides (TMDs), which are well known as typical two-dimensional (2D) semiconductive materials, possess a unique layered structure, leading to their wide-spread applications in various fields, such as catalysis, energy storage, sensing, etc. In recent years, a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption (EMA) has been carried out. Therefore, it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.

View Article and Find Full Text PDF

The pathophysiology of osteoarthritis (OA) is closely linked to autophagy abnormalities in articular chondrocytes, the sole mature cell type in healthy cartilage. Nevertheless, the precise molecular mechanism remains uncertain. Previous research has demonstrated that leptin activates mTORC1 , thereby inhibiting chondrocyte autophagy during the progression of OA.

View Article and Find Full Text PDF

Solid-state refrigeration technology is expected to replace conventional gas compression refrigeration technology because it is environmentally friendly and highly efficient. Among various solid-state magnetocaloric materials, Ni-Mn-based ferromagnetic shape memory alloys (SMAs) have attracted widespread attention due to their multifunctional properties, such as their magnetocaloric effect, elastocaloric effect, barocaloric effect, magnetoresistance, magnetic field-induced strain, etc. Recently, a series of in-depth studies on the thermal effects of Ni-Mn-based magnetic SMAs have been carried out, and numerous research results have been obtained.

View Article and Find Full Text PDF

Dielectric materials play an important role in devices for energy conversion and storage. Based on first-principles calculations, novel two-dimensional Janus GaOClX (X = F, Br, and I) monolayers with superior energy storage properties are predicted. They are indirect-bandgap semiconductors with bandgaps in the range of 2.

View Article and Find Full Text PDF

Rapid advances in the engineering application prospects of metal-organic framework (MOF) materials necessitate an urgent in-depth understanding of their mechanical properties. This work demonstrates unprecedented recoverable elastic deformation of Ni-tetraphenylporphyrins (Ni-TCPP) MOF nanobelts with a tensile strain as high as 14%, and a projected yield strength-to-Young's modulus ratio exceeding the theoretical limit (≈10%) for crystalline materials. Based on first-principles simulations, the observed behavior of MOF crystal can be attributed to the mechanical deformation induced conformation transition and the formation of helical configuration of dislocations under high stresses, arising from their organic ligand building blocks in the crystal structures.

View Article and Find Full Text PDF

Two-dimensional (2D) materials with excellent properties are emerging as promising candidates in electronics and spintronics. In this work, a novel GaOCl monolayer is proposed and studied systematically based on first-principles calculations. With excellent thermal and dynamic stability at room temperature, its wide direct bandgap (4.

View Article and Find Full Text PDF

The present work reports the interfacial behaviors and mechanical properties of AlCoCrFeNi high-entropy alloy (HEA) reinforced aluminum matrix composites (AMCs) based on first-principles calculations. It is found the stability of HEA-reinforced AMCs is strongly dependent on the local chemical compositions in the interfacial regions, i.e.

View Article and Find Full Text PDF

With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed.

View Article and Find Full Text PDF

InSeBr-Type monolayers, ternary In(Se,S)(Br,Cl) compounds, are typical two-dimensional (2D) Janus materials and can be exfoliated from their bulk crystals. The structural stability, electronic properties, mechanical flexibility, and intrinsic piezoelectricity of these InSeBr-type 2D Janus monolayers are comprehensively investigated by first-principles calculations. Our calculations show that the stable InSeBr-type monolayers exhibit ultrahigh mechanical flexibility with low Young's moduli.

View Article and Find Full Text PDF

The pulmonary sequelae of coronavirus disease 2019 (COVID-19) have not been comprehensively evaluated. We performed a follow-up study analyzing chest computed tomography (CT) findings of COVID-19 patients at 3 and 6 months after hospital discharge. Between February 2020 and May 2020, a total of 273 patients with COVID-19 at the Shenzhen Third People's Hospital were recruited and followed for 6 months after discharge.

View Article and Find Full Text PDF

Two-dimensional black phosphorus (2D BP), well known as phosphorene, has triggered tremendous attention since the first discovery in 2014. The unique puckered monolayer structure endows 2D BP intriguing properties, which facilitate its potential applications in various fields, such as catalyst, energy storage, sensor, etc. Owing to the large surface area, good electric conductivity, and high theoretical specific capacity, 2D BP has been widely studied as electrode materials and significantly enhanced the performance of energy storage devices.

View Article and Find Full Text PDF

Background: Acquired immunodeficiency syndrome-associated Kaposi's sarcoma (AIDS-KS) was the first malignant neoplasm to be described as being related to AIDS. The lungs are the most common visceral site of AIDS-KS. This study aimed to analyze the computed tomography (CT) manifestations of pulmonary involvement in AIDS-KS.

View Article and Find Full Text PDF

Due to their broken out-of-plane inversion symmetry, Janus two-dimensional (2D) materials exhibit some exceptional and interesting physical properties and have recently attracted increasing attention. Herein, based on first-principles calculations, we propose a series of Janus 2D titanium nitride halide TiNXY (X, Y = F, Cl, or Br, and X ≠ Y) monolayers constructed from 2D ternary compounds TiNX (X = F, Cl, or Br), where the halogen atoms X or Y are located on each side of the monolayer, respectively. Our calculations confirm that the Janus monolayers are both dynamically and thermally stable.

View Article and Find Full Text PDF

Low-dimensional materials have aroused widespread interest for their novel and fascinating properties. Based on first-principles calculations, we predict the one-dimensional (1D) InSeI nanochains with van der Waals (vdW) interchain interactions, which could be exfoliated mechanically and kept at steady states at room temperature. Compared with bulk InSeI, the single nanochain InSeI has a larger direct bandgap of 3.

View Article and Find Full Text PDF

The sorption removal of radionuclides Sr using a freestanding functional membrane is an interesting and significant research area in the remediation of radioactive wastes. Herein, a novel self-assembled membrane consisting of metal-organic framework (MOF) nanobelts and graphene oxides (GOs) are synthesized through a simple and facile filtration method. The membrane possesses a unique interwove morphology as evidenced from SEM images.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5ne7ra6ge4cer7cdg0qg395m4ppi3p1f): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once